
6) $\square \square \square \square \square \square \square \square \square \square$

## SALES \& SERVICE:

A Tech Authority, Inc. 13745 Stockton Ave.
Chino CA 91710
909-614-4522
sales@atechauthority.com

## POSTITP 880

NC Software
382 897-02

User's Manual
English (en)
3/2004

POSITIP 880 Back View


## Keypad and soft keys

4 axis keys to select between $X, Y$ and $Z$ axes

Clear entry or error messages

Incremental dimensions

Keys for selecting operating mode (for detailed description of these key functions, see Operating Modes in chapter I-2)


Soft keys - Row of keys under the screen of the POSITIP whose functions vary according to associated fields that appear above them on the screen


## General Notes

## Software version

This User's Manual is for POSITIP 880 with software version:
382 897-02.
The software version of your unit is shown on the initial power up

This User's Manual covers the functions of the POSITIP 880 for both milling and turning applications. Basic POSITIP 880 functions are covered in the first 4 chapters of this manual. The turning section deals only with the functions specific to turning applications.

## About this manual

This manual is divided into two parts:

- Part I: Operating Instructions
- Part II: Technical Information


## Operating Instructions

When using the POSITIP 880 in your work, you need only refer to the Operating Instructions (Part I).

If you're new to POSITIP 880, you can use the operating instructions as a step-by-step workbook. This part begins with a short introduction to the basics of coordinate systems and position feedback, and provides an overview of the available features. Each feature is explained in detail, using an example which you can immediately try out on the machine - so you won't get "lost" in the theory. As a beginner you should work through all the examples presented.

If you're already familiar with POSITIP 880, you can use the Operating Instructions as a comprehensive review and reference guide.

## Technical Information

If you are interfacing the POSITIP 880 to a machine or wish to use the data interfaces, refer to the technical information in Part II.

## Dialog flowcharts

Dialog flowcharts are used for each example in this manual. They are laid out as follows:

## PROMPT

## KEY <br> This area explains the key function or work step. If necessary, supplementary information will also be included.

If there is an arrow at the end of the flowchart, this means that it continues on the next page.

A perforated line indicates an alternative method of carrying out the given function.

A prompt appears with some actions (not always) in the message bar on the screen.

## Important Notes in this Manual

Special green note boxes contain especially important information.
Please pay special attention to these notes. Neglecting this information can result in e.g. functions not working in the desired way or in causing damage to the workpiece or to the tool.

## Symbols within the notes

Every note is marked with a symbol on the left informing about the meaning of the note.
General Information
e.g. on the behavior of the POSITIP 880.

!
Warning - Refer to accompanying documents
e.g. when a special tool is required for a function.

Caution - Risk of electric shock
e.g. when opening a housing.
I Operating Instructions ..... 11
I-1 Fundamentals of Positioning ..... 12
Coordinate Systems ..... 12
Setting the Datum ..... 13
Nominal Position, Actual Position and Distance-To-Go ..... 14
Absolute Workpiece Positions ..... 15
Incremental Workpiece Positions ..... 15
Position Encoders ..... 17
Reference Marks ..... 17
Angle Reference Axis ..... 18
I-2 Working with POSITIP 880 - First Steps ..... 19
Power Up ..... 19
Before You Start ..... 19
Operating Modes ..... 21
On-Screen Operating Instructions (HELP Mode) ..... 22
Confirming Your Changes ..... 22
Messages ..... 23
Error messages ..... 23
Selecting the Unit of Measure ..... 24
Selecting the Angle Format ..... 24
Tool Table ..... 24
Calling the Tool Data ..... 25
I - 3 Actual Value ..... 26
Datum Setting: Approaching Positions and Entering Actual Values ..... 26
Probing Functions for Datum Setting ..... 28
Datum Setting with a Tool ..... 34
I-4 Distance-To-Go ..... 36
Displaying and Moving to Positions ..... 36
I-5 Milling Patterns ..... 43
Circle Pattern ..... 43
Linear Pattern ..... 46
Milling a Rectangle Pocket ..... 49
I-6 Programming POSITIP 880 ..... 53
Program Capabilities ..... 53
Editing and moving through a program ..... 53
Programming Features ..... 54
Tool Call ..... 56
Datum Call ..... 57
Presets ..... 58
Hole Patterns and Rectangle Patterns ..... 59
Subprograms ..... 59
Labels ..... 59
Label Number ..... 60
Label Call ..... 60
Position Drill ..... 62
Milling a Line ..... 63
Milling an Arc ..... 64
Blend ..... 66
Chamfer ..... 68
File Operation Soft Keys ..... 70
Loading, saving, deleting \& clearing a program ..... 70
Directories ..... 71
Importing a Program ..... 73
Exporting a Program ..... 74
Block Function Soft Keys ..... 74
I-7 Executing a Program ..... 78
Program views ..... 80
Contour View ..... 81
I - 8 INFO Screen ..... 83
JOB SETUP Menu ..... 83
Tool Table Usage ..... 85
Installation Menu ..... 92
Calculator ..... 92
Language ..... 95
Inch/MM ..... 95
I - 9 POSITIP 880 Turning Functions ..... 96
Power Up ..... 96
Fundamentals of Positioning ..... 97
Job Setup for Turning Applications ..... 98
Tool Table Usage ..... 99
Tool Offsetting ..... 102
NOTE/SET Function ..... 103
Datum Setting ..... 104
Taper Calculator ..... 104
Programming Turning Functions for POSITIP 880 ..... 106
Programming Features Soft Keys ..... 106
Multipass ..... 107
File Operation Soft Keys ..... 108
Block Function Soft Keys ..... 109
II Technical Information ..... 111
II - 1 Installation and Electrical Connection ..... 112
Items Supplied ..... 112
Mounting Location ..... 112
Installation ..... 112
Connecting the Encoders ..... 114
Connecting an Edge Finder ..... 115
II - 2 Installation Setup ..... 116
Initial switch-on ..... 116
General field/form navigation guide ..... 117
Axes Configuration ..... 117
Encoder Setup ..... 118
Error Compensation ..... 119
Linear Error Compensation ..... 120
Non-Linear Error Compensation ..... 121
Serial Port (X31) ..... 123
Parallel Port (X32) ..... 123
Protection ..... 124
Counter Settings ..... 124
Diagnostics ..... 125
AMI (Auxiliary Machine Interface)(X51) (Optional) ..... 126
Remote Console (X61) (Optional) ..... 127
II - 3 Encoders and Measured Value Display ..... 128
Setting the display step with rotary encoders ..... 129
II - 4 Data Interface ..... 130
II - 5 Measured Value Output ..... 134
Examples of character output at the data interface ..... 134
II-6 Specifications for Milling ..... 138
II-7 Specifications for Turning ..... 140
II - 8 Dimensions ..... 142
I - 9 Accessories ..... 143
Accessory ID Numbers ..... 143
POSITIP 880 Mounting Instructions
Universal Mounting ArmId. Nr. 382 929-01144
POSITIP 880 Mounting Instructions
Mounting base
Id. Nr. 382 892-01 ..... 145
POSITIP 880 Mounting Instructions
Tilt/Swivel Mount
Id. Nr. 382 891-01 ..... 146


Operating Instructions

## I-1 Fundamentals of Positioning

You can skip over this chapter if you are familiar with the concepts of coordinate systems, incremental and absolute dimensions, nominal and actual positions, and distance-togo.

## Coordinate Systems

In order to define positions on a surface, a reference system is required.

For example, positions on the earth's surface can be defined absolutely by their geographic coordinates of longitude and latitude. In contrast to the relative definition of a position that is referenced to a known location, the network of horizontal and vertical lines on the globe constitute an absolute reference system. See Fig. I.1.

On a milling machine, workpieces are normally machined according to a workpiece-based Cartesian coordinate system (a rectangular coordinate system named after the French mathematician and philosopher Renatus Cartesius, who lived from 1596 to 1650). The Cartesian coordinate system is based on three coordinate axes designated $X, Y$ and $Z$ which are parallel to the machine guideways.

The figure to the right (Fig. I.2) illustrates the right-hand rule for remembering the three axis directions: the middle finger is pointing in the positive direction of the tool axis from the workpiece toward the tool (the $Z$ axis), the thumb is pointing in the positive $X$ direction, and the index finger in the positive $Y$ direction.


Fig. I. 1 The geographic coordinate system is an absolute reference system


Fig. I. 2 Designations and directions of the axes on a milling machine

## Setting the Datum

The workpiece drawing (Fig. I.3) identifies a certain point on the workpiece (usually a corner) as the absolute datum and perhaps one or more other points as relative datums.

The datum setting procedure establishes these points as the origin of the absolute or relative coordinate systems: The workpiece, which is aligned with the machine axes, is moved to a certain position relative to the tool and the display is set either to zero or to another appropriate value (e.g., to compensate the tool radius).

## Example:

Drawing with several relative datums (ISO 129 or DIN 406 Part 11, Fig. 171)



Fig. I. 3 The workpiece datum represents the origin of the Cartesian coordinate system

Example: Coordinates of hole 1:
$X=10 \mathrm{~mm}$
$Y=5 \mathrm{~mm}$
$Z=0 \mathrm{~mm}$ (hole depth: $Z=-5 \mathrm{~mm}$ )
The datum of the Cartesian coordinate system is located 10 mm from hole 1 in the $X$ axis and 5 mm from it in the $Y$ axis. See Fig. I.4.

The KT Edge Finder from HEIDENHAIN, together with the POSITIP 880's edge finding functions, facilitates finding and setting datums.


Fig. I. 4 Hole 1 defines the coordinatesystem

## Nominal Position, Actual Position and Distance-To-Go

The position that the tool is to move to is called the nominal position while the position of the tool at any given moment is called the actual position. The distance from the nominal position to the actual position is called the distance-to-go. See Fig. I.5.

## Sign for distance-to-go

The distance-to go has a positive sign if the axis direction from the actual towards the nominal position is negative.
The distance-to-go has a negative sign if the axis direction from the actual towards the nominal position is positive.


Fig. I. 5 Nominal position S, actual position I and distance-to-go R

## Absolute Workpiece Positions

Each position on the workpiece is uniquely identified by its absolute coordinates. See Fig. I.6.

Example: Absolute coordinates of position 1:
$X=20 \mathrm{~mm}$
$Y=10 \mathrm{~mm}$
$Z=15 \mathrm{~mm}$
If you are drilling or milling a workpiece according to a workpiece drawing with absolute coordinates, you are moving the tool to the value of the coordinates.


Fig. I. 6 Position 1 definition through absolute coordinates

## Incremental Workpiece Positions

A position can also be referenced to the preceding nominal position. In this case the relative datum is always the last nominal position. Such coordinates are referred to as incremental coordinates (increment = increase). They are also called incremental or chain dimensions (since the positions are defined as a chain of dimensions). Incremental coordinates are designated with the prefix $\mathbf{I}$.

Example: Incremental coordinates of position 3 referenced to position 2. See Fig. I. 7

Absolute coordinates of position 2:
$X=10 \mathrm{~mm}$
$Y=5 \mathrm{~mm}$
$Z=20 \mathrm{~mm}$
Incremental coordinates of position 3:
IX $=10 \mathrm{~mm}$
$\mathbf{I Y}=10 \mathrm{~mm}$
$I Z=-15 \mathrm{~mm}$
If you are drilling or milling a workpiece according to a drawing with incremental coordinates, you are moving the tool by the value of the coordinates.


Fig. I. 7 Positions 2 and 3 through incremental coordinates

A coordinate list corresponding to this example is useful when working in the operating mode: PROGRAMMING. See Fig. I. 8


Fig. I. 8 Workpiece drawing with coordinate dimensioning (ISO 129 or DIN 406 Part 11, Fig. 179)

| Coordinateorigin | Pos. | Dimensions in mm |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Coordin <br> X1 X2 | Y1 Y2 | r | f | d |
| 1 | 1 | 0 | 0 |  |  | - |
| 1 | 1.1 | 325 | 320 |  |  | $\varnothing 120 \mathrm{H7}$ |
| 1 | 1.2 | 900 | 320 |  |  | $\varnothing 120 \mathrm{H7}$ |
| 1 | 1.3 | 950 | 750 |  |  | $\varnothing 200 \mathrm{H7}$ |
| 1 | 2 | 450 | 750 |  |  | $\varnothing 200 \mathrm{H7}$ |
| 1 | 3 | 700 | 1225 |  |  | $\varnothing 400 \mathrm{H8}$ |
| 2 | 2.1 | -300 | 150 |  |  | $\varnothing 50 \mathrm{H} 11$ |
| 2 | 2.2 | -300 | 0 |  |  | ¢ 50 H 11 |
| 2 | 2.3 | -300 | -150 |  |  | $\varnothing 50 \mathrm{H} 11$ |
| 3 | 3.1 |  |  | 250 | $0^{\circ}$ | ø 26 |
| 3 | 3.2 |  |  | 250 | $30^{\circ}$ | $\varnothing 26$ |
| 3 | 3.3 |  |  | 250 | $60^{\circ}$ | $\varnothing 26$ |
| 3 | 3.4 |  |  | 250 | $90^{\circ}$ | $\varnothing 26$ |
| 3 | 3.5 |  |  | 250 | $120^{\circ}$ | $\varnothing 26$ |
| 3 | 3.6 |  |  | 250 | $150^{\circ}$ | $\bigcirc 26$ |
| 3 | 3.7 |  |  | 250 | $180^{\circ}$ | $\varnothing 26$ |
| 3 | 3.8 |  |  | 250 | $210^{\circ}$ | ø 26 |
| 3 | 3.9 |  |  | 250 | $240^{\circ}$ | $\varnothing 26$ |
| 3 | 3.10 |  |  | 250 | $270^{\circ}$ | $\varnothing 26$ |
| 3 | 3.11 |  |  | 250 | $300^{\circ}$ | $\varnothing 26$ |
| 3 | 3.12 |  |  | 250 | $330^{\circ}$ | $\varnothing 26$ |

## Position Encoders

The position feedback encoders convert the movement of the machine axes into electrical signals. The POSITIP 880 constantly evaluates these signals and calculates the actual positions of the machine axes, which it displays as a numerical value on the screen. See Fig. I.9.

If there is an interruption in power, the calculated position will no longer correspond to the actual position. When power is restored, you can re-establish this relationship with the aid of the reference marks on the position encoders and the POSITIP 880's reference mark evaluation feature (REF).

## Reference Marks

The scales of the position encoders contain one or more reference marks. When reference marks are crossed they can be used to define an absolute position in an incremental system. If power is interrupted this absolute position is lost and the relationship between the reference mark and scale position is lost. The reference marks on the position encoders and the POSITIP 880's reference mark evaluation feature allows the unit to quickly re-establish this relationship again when power is restored. See Fig. I.10.

When a reference mark is crossed over, it generates a signal which identifies that position as the reference point. The POSITIP 880 uses this reference point to restore the relationship between the scale position and the display value which was last defined by setting the datum.

If the position encoders feature distance-coded reference marks, there are reference marks uniquely spaced along the length of the scale. Crossing any two reference marks will restore the datum. Each axis need only move a limited distance for linear encoders, and angle for rotary encoders.

[^0]

Fig. I. 9 Linear position encoder, here for the $X$ axis


Fig. I. 10 Linear scales: with distance-coded reference marks (upper illustration) and one reference mark (lower illustration)

## Angle Reference Axis

For angular positions, the following reference axes are defined:

| Plane | Angle reference axis |
| :--- | :--- |
| $X Y$ | $+X$ |
| $Y Z$ | $+Y$ |
| $Z X$ | $+Z$ |

Positive direction of rotation is counterclockwise if the working plane is viewed in negative tool axis direction. See Fig. I.11.
Example: Angle in the working plane $X / Y$

| Angle | Corresponds to the... |
| :--- | :--- |
| $+45^{\circ}$ | $\ldots$ bisecting line between $+X$ and $+Y$ |
| $+/-180^{\circ}$ | $\ldots$ negative $X$ axis |
| $-270^{\circ}$ | $\ldots$ positive $Y$ axis |



Fig. I. 11 Angle and the angle reference axis, e.g. in the $X / Y$ plane

## I-2 Working with POSITIP 880 First Steps

Power Up


Switch on the power (located on the back). It will take approximately 25-30 seconds for system to start after power up. The initial screen will appear (This screen will only appear the first time you power up). Select the language by pressing the LANGUAGE soft key.

At this point you have the choice of MILL or TURN. Select the MILL soft key to proceed with milling functions the first time you power up. See Table of Contents for turning functions section. See Fig. I.12.

You can change the application later in INSTALLATION SETUP under COUNTER SETTINGS.

Your POSITIP 880 is now ready for operation and is in the operating mode ACTUAL VALUE. Axis will show "NO REF".

## Before You Start

The POSITIP 880's reference mark evaluation feature automatically reestablishes the relationship between axis slide positions and display values that you last defined by setting the datum.

If the axis encoder has reference marks, the NO REF indicator will flash. See Fig. I.13. After crossing over the reference marks, the indicator will stop flashing and change to REF.

## Working without reference mark evaluation

You can also use the POSITIP 880 without crossing over the reference marks. Press the NO REF soft key to exit the reference mark evaluation routine and continue in ACTUAL VALUE mode. The NO REF indicator will indicate that reference marks were not crossed over for that axis.

You can still cross over reference marks at a later time. The ENABLE REF soft key will be available from ACTUAL VALUE mode. Press this soft key to activate the reference mark evaluation routine.


Fig. I. 12 Initial screen


Fig. I. 13 Display before choosing N0 REF

The purpose of the ENABLE REF function, is to give the operator the opportunity to either ignore the reference marks as they are crossed over by disabling it, or finding reference marks when necessary by enabling it. When the ENABLE REF soft key is pressed, the POSITIP 880 is ready to identify a reference mark. When the ENABLE REF soft key is not depressed, POSITIP 880 will ignore all reference marks. When all reference marks have been found, the ENABLE REF soft key will disappear.

```
If an encoder is setup without reference marks, then the
``` Once reference marks for all desired axes are established, press No REF soft key to cancel out of routine. You do not have to cross over the reference marks of all the encoders, only those that you need.
\[
\begin{aligned}
& \text { If you do not cross over the reference marks, POSITIP } 880 \\
& \text { does not store the datum points. This means that it is not } \\
& \text { possible to re-establish the relationship between axis slide } \\
& \text { positions and display values after a power interruption } \\
& \text { (switch-off). }
\end{aligned}
\]

Cross over the reference marks (in any order).

Do not cross over the reference marks. Note: In this case the relationship between axis slide position and display value will be lost after a power interruption. Press the NO REF soft key.

\section*{Operating Modes}

Selecting the operating mode determines which functions are available to you.
\begin{tabular}{lll}
\hline Available functions & Mode & Key \\
\hline \begin{tabular}{l} 
Position display for workpiece \\
machining; Zero reset; Datum \\
setting - also with edge finder probe
\end{tabular} & ACTUAL VALUE \\
\hline \begin{tabular}{l} 
Distance-to-go display; hole \\
patterns; milling and drilling with tool \\
radius compensation
\end{tabular} & DISTANCE-TO-GO & \\
\hline \begin{tabular}{l} 
Storage of work steps for small-lot \\
production
\end{tabular} & PROGRAMMING \\
\hline \begin{tabular}{l} 
Run programs previously created in \\
the PROGRAMMING mode
\end{tabular} & EXECUTE PROGRAM & \\
\hline
\end{tabular}

You can switch to another operating mode at any time by pressing the key for the desired mode.
In the following examples requiring tool usage, refer to chapter l-8 under Job Setup.

\section*{On-Screen Operating Instructions (HELP Mode)}

The integrated operating instructions provide information and assistance in any situation. See Fig. I. 14 \& Fig. I.15.

To call the operating instructions:
- Press the INFO soft key.
- Press the HELP soft key.
- Information relevant to the current operation will be displayed.
- Use the paging soft keys if the explanation is spread over more than one screen page.
To view information on another topic:
- Press the LIST OF TOPICS soft key.
- Press the paging soft keys to scroll through the index.
\(\Rightarrow\) Press the VIEW TOPIC soft key to select the item you need.
To leave the operating instructions:
- Press the EXIT HELP soft key.

\section*{Example: On-screen operating instructions for datum setting with the edge finder (CENTER LINE)}

The CENTER LINE function is described in this manual on page 20.
- From the ACTUAL VALUE mode, press the PROBE soft key.
- Press the INFO soft key.
- Press the HELP soft key.
- To leave the operating instructions: Press the EXIT HELP soft key. The screen returns to the screen with the SET DATUM form and DRO display.

\section*{Confirming Your Changes}

You must confirm your changes by pressing the ENT key for them to become effective. The instruction sections of this manual will occasionally give the command "Confirm your changes." This means press the ENT key.

\section*{Messages}

The Message bar messages will change color depending on the type of information it is conveying: Normal messages will appear as gray boxes with black text. Instructional messages will appear as blue boxes with white text. Error messages will appear as red boxes with white text.

\section*{Selecting the Unit of Measure}

Positions can be displayed and entered in millimeters or inches. If you choose inches, INCH will be displayed on the status bar at the top of the screen. See Fig. I. 16.

To change the unit of measure:
P Press the INFO soft key.
> Press the INCH/MM soft key.
- The unit of measure can also be set in JOB SETUP. Refer to Job Setup, chapter I-8.

\section*{Selecting the Angle Format}

Angles - such as for a rotary table - can be displayed and entered either as decimal degrees, degrees/minutes/seconds (DMS) or radian values. Refer to Job Setup, chapter l-8 for instructions on setting angle format.

\section*{Tool Table}

The POSITIP 880's tool table provides a convenient way to store diameter and length offset information for each of the tools you commonly use. You can enter up to 99 tools.

Before you start workpiece machining, select the tool you are using from the tool table. POSITIP 880 will then take into account the entered diameter and length of the tool.

The tool length is the difference in length \(\Delta \mathrm{L}\) between the tool and the reference tool. The reference tool is indicated by T1 in Fig. I.17.

\section*{Sign for the length difference \(\Delta L\)}

If the tool is longer than the reference tool: \(\Delta \mathrm{L}>0(+)\) If the tool is shorter than the reference tool: \(\Delta \mathrm{L}<0(-)\)

\section*{Refer to Job Setup for entering a tool into the tool table.}


Fig. I. 16 The MM indicator


Fig. I. 17 Tool length and diameter

\section*{Calling the Tool Data}

The lengths and diameters of your tools must first be entered into the POSITIP 880's tool table.

Before you start machining, select the tool you are using from the tool table. POSITIP 880 then takes into account the stored tool data when you work with tool compensation (e.g., with hole patterns).

\section*{aff You can also call the tool data with the command TOOL CALL in a program.}

\section*{Tool call}


Cursor to the tool you want or enter the tool number directly.

Press USE, then USE NEW SETTINGS.
```

USE

```

View status bar to verify the proper tool has been called.

\section*{Datum Setting: Approaching Positions and Entering Actual Values}

The easiest way to set datum points is to use the POSITIP 880's probing functions - regardless of whether you probe the workpiece with the HEIDENHAIN KT Edge Finder or with a tool. Description of the probing functions: see "Probing Functions for Datum Setting" on page 28

Of course, you can also set datum points in the conventional manner by touching the edges of the workpiece one after the other with the tool and entering the tool positions as datum points (see examples following this page).

The datum table can hold up to 99 datum points. In most cases this will free you from having to calculate the axis travel when working with complicated workpiece drawings containing several datums.

Datum settings are performed in the ACTUAL VALUE operating mode and define the relationships between the axis positions and the display values. If necessary, the datum table's values may be changed by entering a value directly.

See Job Setup for setting the datum value directly.

\section*{Datum selection (Mill only)}

In ACTUAL VALUE mode, the Up/Down arrow keys may be used to select the next or previous datum number.

\section*{Tool selection (Turn only)}

In ACTUAL VALUE mode, the Up/Down arrow keys may be used to select the next or previous tool number.

\section*{Example: Setting a workpiece datum without the probing} function. See Fig. I. 18 \& Fig. I. 19.
Working plane: XY
Tool axis: Z
Tool diameter: \(\mathrm{D}=3 \mathrm{~mm}\)
Axis sequence in this example: \(X-Y-Z\)

\section*{Preparation: Calling the tool data}

Select the tool data for the tool which you are using to touch the workpiece.

\section*{Preparation: Select the datum}

Operating mode: ACTUAL VALUE

DATUM
From ACTUAL VALUE mode, press the DATUM soft key.

Cursor will be in the DATUM NUMBER field.
Enter the datum number and press ENT.
Select the \(X\) axis key.
DATUM SETTING X
1 5 Enter the position of the tool center \((X=-1.5 \mathrm{~mm})\)
and
transfer the X -coordinate of the datum and press ENT.

\section*{(6)}

Touch the workpiece at edge 2.

Select the \(Y\) axis key.


Enter the position of the tool center \((Y=-1.5 \mathrm{~mm})\) and


\section*{Probing Functions for Datum Setting}

It is particularly easy with a HEIDENHAIN KT 130 Edge Finder (Fig. I.20).
\[
\begin{aligned}
& \text { During probe functions, the display freezes with the } \\
& \text { location of the edge, centerline, or circle center. }
\end{aligned}
\]

The following probing soft key functions are available:
- Workpiece edge as datum: EDGE
- Centerline between two workpiece edges: CENTER LINE
- Center of a hole or cylinder: CIRCLE CENTER

With Circle Center, the hole must be in a main plane. The three main planes are formed by the axes \(X / Y, Y / Z\) and \(Z / X\).
The POSITIP 880's probing functions enable you to set datum points with a HEIDENHAIN KT Edge Finder. The probing functions are also available when you are using a tool instead of an edge finder.


Fig. I. 20 The HEIDENHAIN KT 130 Edge Finder

\section*{Datum setting with the edge finder}

Preparation: Enter the stylus diameter and select the datum
- Press the INFO soft key.
- Press JOB SETUP, then cursor to EDGE FINDER and press ENT.
- Enter the diameter of the edge finder stylus and confirm with ENT.
- Enter the desired length and confirm with ENT.
- Enter the desired unit of measurement (inch/mm).
- Press USE, then USE NEW SETTINGS.

In all probing functions, POSITIP 880 takes into account the entered stylus diameter.

\section*{To abort the probing function}

While the probing function is active, POSITIP 880 displays the CANCEL soft key. Choose this soft key to return to the opening state of the selected probing function.

Example: Probe workpiece edges, and set the corner as a datum.

\section*{See Fig. I. 21 \& Fig. I. 22.}

Datum axis:
\[
\begin{aligned}
& X=0 \mathrm{~mm} \\
& Y=0 \mathrm{~mm}
\end{aligned}
\]

The coordinates of the datum can be set by probing edges or surfaces and capturing them as datums as described on the next page.

Operating mode: ACTUAL VALUE



Fig. I. 21 Form for setting datum using an edge


Fig. I. 22

PROBE IN Y AXIS


Move the edge finder toward the workpiece until the LEDs on the edge finder light up.

Retract the edge finder from the workpiece.

\section*{ENTER VALUE FOR Y + 0}

0
\(\mathbf{0}\) is offered as a default value for the coordinate. Enter the desired coordinate for the workpiece edge, for example \(\mathrm{Y}=0 \mathrm{~mm}\) and
set the coordinate as a datum for this workpiece edge. Press ENT.

\section*{Example: Set centerline between two workpiece edges as datum. See Fig. I. 23 \& Fig. I. 24.}

The position of the centerline \(\mathbb{M}\) is determined by probing the edges 1 and 2.

The centerline is parallel to the Y axis.
Desired coordinate of the centerline: \(X=0 \mathrm{~mm}\)
Operating mode: ACTUAL VALUE


Spacing between edges is displayed on the message bar when using the probe centerline feature.
\begin{tabular}{l|l}
\hline PROBE & Press PROBE. \\
\hline
\end{tabular}
(1)

Cursor to the axis for which the coordinate is to be set: \(X\) axis.

\section*{CENTER LINE}

Press CENTER LINE.

\section*{1. PROBE IST EDGE IN X}


Move the edge finder toward workpiece edge 1 until the LEDs in the edge finder light up.

\section*{2. PROBE 1ST EDGE IN X}


Move the edge finder toward workpiece edge 2 until the LEDs in the edge finder light up. The distance between the edges is displayed on the message bar.


Fig. I. 23 Setting centerline between two edges


Fig. I. 24

Retract the edge finder from the workpiece.

Enter coordinate ( \(\mathrm{X}=0 \mathrm{~mm}\) ) and transfer coordinate as datum for the centerline and press ENT.

USE
Press USE soft key.

Example: Probe the center of a hole with an edge finder and set the datum. Offsetting X -axis datum by 50 mm from center of hole. See Fig. I. 25 \& Fig. I.26.
Main plane: XY
Edge finder axis: parallel to the \(Z\) axis
\(X\) coordinate of the circle center: \(X=50 \mathrm{~mm}\)
Y coordinate of the circle center: \(\mathrm{Y}=0 \mathrm{~mm}\)
Operating mode: ACTUAL VALUE
\begin{tabular}{|l|l}
\hline PROBE & Press PROBE. \\
\hline Cursor to the axis for which the coordinate is to be \\
set: \(X\) axis.
\end{tabular}

\section*{CIRCLE \\ CENTER}

XY

Cursor to the axis for which the coordinate is to be set: X axis.

Press CIRCLE CENTER.

Select plane ( \(\mathrm{X} / \mathrm{Y}, \mathrm{Y} / \mathrm{Z}\) or \(\mathrm{Z} / \mathrm{X}\) ) containing the circle (main plane): Plane \(X Y\)


Fig. I. 25 Setting the center of a hole


Fig. I. 26

Move edge finder towards first point 1 on the circumference until the LEDs on the edge finder light up.

Retract edge finder from bore hole wall.

Probe two additional points on the circumference in the same manner. Further instructions appear on the screen. See Prompt bar for measured diameter.
```

ENTER CENTER POINT X X = 50

```

50 Enter the first coordinate ( \(X=50 \mathrm{~mm}\) ) and
transfer coordinate as datum for the circle center and press ENT.

ENTER CENTER POINT \(Y \quad Y=0\)
0
Accept default entry \(Y=0 \mathrm{~mm}\). Press ENT. Press USE.

\section*{Datum Setting with a Tool}

Even if you use a tool or non-electrical edge finder to set datum points, you can still use POSITIP 880's probing functions described under the section "Datum setting with the Edge Finder." EDGE, CENTER LINE and CIRCLE CENTER. See Fig. I. 27 \& Fig. I. 28.

\section*{Preparation: Enter the tool diameter and select the datum}
- Press INFO.
- Press the J0B SETUP soft key.
- Select the TOOL TABLE form by pressing ENT.
- Cursor to the tool you will use to set the datum.
- Press USE and then USE NEW SETTINGS.

Example: Probe workpiece edge and set edge as datum
Datum axis: \(\mathrm{X}=0 \mathrm{~mm}\)
Tool diameter \(\mathrm{D}=3 \mathrm{~mm}\)
Operating mode: ACTUAL VALUE
\begin{tabular}{l|l}
\hline PROBE & Press PROBE. \\
\begin{tabular}{ll} 
Cursor to the axis for which the coordinate is to be \\
set: \(X\) axis.
\end{tabular} \\
\hline PEGE & Press EDGE soft key. \\
\hline PROBE IN X & \begin{tabular}{l} 
Touch workpiece edge
\end{tabular} \\
\hline NOTE & \begin{tabular}{l} 
Store the position of the edge by pressing the NOTE \\
soft key.
\end{tabular} \\
\hline
\end{tabular}


Fig. I. 27 Setting datum using an edge


Fig. 1.28

Retract the tool from the workpiece.

\section*{I-4 Distance-To-Go}

\section*{Displaying and Moving to Positions}

\section*{Distance-To-Go feature}

Although it is often sufficient to have POSITIP 880 display the coordinates of the actual position of the tool, it is usually better to use the distance-to-go feature - this enables you to approach to nominal positions simply by traversing to display value zero. Even when working with the distance-to-go feature you can enter coordinates in absolute or incremental dimensions. Make sure you are in DISTANCE-TO-GO mode.

\section*{Graphic positioning aid}

When you are traversing to display value zero, POSITIP 880 displays a graphic positioning aid. See Fig. I. 29.

POSITIP 880 displays the graphic positioning aid in a narrow rectangle underneath the currently active axis. Two triangular marks in the center of the rectangle symbolize the nominal position you want to reach.
A small square symbolizes the axis slide. An arrow indicating the direction appears in the square while the axis is moving. You can easily tell whether you are moving towards or away from the nominal position. Note that the square does not begin to move until the axis slide is near the nominal position.

Refer to the JOB SETUP menu to setup the graphic positioning aid.

\section*{Toll Selection}

In ACTUAL VALUE mode, the up/down arrow keys may be used to select the next or previous tool number

\section*{Taking the tool radius into account}

POSITIP 880 has a tool radius compensation feature. This allows you to enter workpiece dimensions directly from the drawing. The displayed remaining distance is then automatically lengthened ( \(\mathrm{R}+\) ) or shortened (R-) by the value of the tool radius. See Fig. I.30.

\section*{Entering tool data}

Enter tool data with the TOOL TABLE soft key.
- Choose T00L TABLE soft key.
- Cursor to the desired tool and press ENT. The TOOL DESCRIPTION form will appear.
- Enter the tool diameter.
- Enter the tool length.
- Enter the tool unit.
- Enter the tool type and press ENT.
- Press USE twice.


Fig. I. 29 Graphic Positioning Aid in use


Fig. I. 30 Tool radius compensation

\section*{Example: Milling a shoulder by traversing to display value zero}

The coordinates are entered as absolute dimensions; the datum is the workpiece zero. See Fig. I. 31 \& Fig. I. 32.

Corner 1: \(X=0 \mathrm{~mm} / \mathrm{Y}=20 \mathrm{~mm}\)
Corner 2: \(X=30 \mathrm{~mm} / \mathrm{Y}=20 \mathrm{~mm}\)
Corner 3: \(X=30 \mathrm{~mm} / \mathrm{Y}=50 \mathrm{~mm}\)
Corner \(4: X=60 \mathrm{~mm} / \mathrm{Y}=50 \mathrm{~mm}\)

\section*{Operating mode: DISTANCE-TO-GO}

Preparation:
- Enter the tool data.
- Pre-position the tool to an appropriate location (such as \(\mathrm{X}=\mathrm{Y}=-20\) mm ).
Move the tool to milling depth.

Select the \(Y\) axis key.

\section*{NOMINAL POSITION VALUE}


Enter nominal position value for corner point 1: \(\mathrm{Y}=20 \mathrm{~mm}\) and

TOOL COMP
(R+)
select tool radius compensation \(\mathrm{R}+\) with T00L COMP ( \(\mathrm{R}+\) ) soft key.

Transfer the nominal position value by pressing USE. The graphic positioning aid for the Y axis is displayed.


Traverse the \(Y\) axis until the display value is zero. The square in the graphic positioning aid is now centered between the two triangular marks.

Once the axis is moved to zero the axis value is incremented to axis value in the next block.


Press the NEXT BLOCK soft key to advance.


Fig. I. 31 Single cycle preset


Fig. I. 32

\section*{Select the \(X\) axis key}

\section*{NOMINAL POSITION VALUE}

\section*{30}

Enter nominal position value for corner point 2: \(Y=+30 \mathrm{~mm}\),

TOOL COMP (R-) select tool radius compensation R - and press USE soft key.

Transfer the nominal position value. The graphic positioning aid for the X axis is displayed.

Traverse the \(X\) axis until the display value is zero. The square in the graphic positioning aid is now centered between the two triangular marks.

Once the axis is moved to zero it will increment to next block.


\section*{NOMINAL POSITION VALUE}

60 Enter nominal position value for corner point 4: \(Y=+60 \mathrm{~mm}\),

\section*{TOOL COMP}
select tool radius compensation \(\mathrm{R}+\) and press USE (R+) soft key.

\author{
USE
}

Transfer the nominal position value. The graphic positioning aid for the X axis is displayed.

Traverse the X axis until the display value is zero. The square in the graphic positioning aid is now centered between the two triangular marks.

Once the axis is moved to zero it will increment to next block.
\(\qquad\)

\section*{Example: Drilling by traversing to display value zero}

Enter the coordinates in incremental dimensions. These are indicated in the following (and on the screen) with a preceding \(\mathbf{I}\). The datum is the workpiece zero. See Fig. I. 33 \& Fig. I. 34.
Hole 1 at: \(X=20 \mathrm{~mm} / \mathrm{Y}=20 \mathrm{~mm}\)
Distance from hole 2 to hole 1: \(\mathbf{I X}=30 \mathrm{~mm} / \mathbf{I} \mathrm{Y}=30 \mathrm{~mm}\)
Hole depth: \(\mathrm{Z}=-12 \mathrm{~mm}\)
Operating mode: DISTANCE-TO-GO

\section*{NOMINAL POSITION VALUE}

Select an axis key: \(X\) axis.
20 Enter nominal position value for hole 1: \(X=20 \mathrm{~mm}\) and press ENT. Cursor will move to the Y axis field.

\section*{NOMINAL POSITION VALUE}

20
Enter nominal position value for hole 1: \(\mathrm{Y}=20 \mathrm{~mm}\) and press ENT. Cursor will move to the \(Z\) axis field.

NOMINAL POSITION VALUE


Enter the nominal position value for the hole depth:
\(Z=-12 \mathrm{~mm}\) The graphic positioning aid for the \(Z\) axis is displayed. Press USE soft key.


Pre-position the drill over the first hole. Traverse \(Z\) axis until the display value is zero. The square in the graphic positioning aid is now centered between the two triangular marks.

Retract the drill in the tool axis (Z).
Once the axis is moved to zero it will increment to next block.


Press the NEXT BLOCK soft key.

Select an axis key: \(X\) axis.


Fig. I. 33 Drilling example


Fig. I. 34

\section*{NOMINAL POSITION VALUE}

30 Enter nominal position value for hole 2: \(\mathrm{Y}=30 \mathrm{~mm}\), mark your input as an incremental dimension, press I hard key.

TOOL COMP
(RO)

Select tool radius compensation RO by pressing TOOL COMP (RO) soft key.

Press USE. The graphic positioning aid for the \(X\) axis is displayed.

Traverse the \(X\) axis until the display value is zero. The square in the graphic positioning aid is now centered between the two triangular marks.

Once the axis is moved to zero it will increment to next block.

Select the \(Y\) axis key.

NOMINAL POSITION VALUE
3 Enter nominal position value for hole 2: \(\mathrm{Y}=30 \mathrm{~mm}\), mark your input as an incremental dimension, press I hard key.

Select tool radius compensation R0 by pressing T00L
\begin{tabular}{c|c}
\(\substack{\text { TOOL COMP } \\
(\text { RO) }}\)
\end{tabular} \(\begin{aligned} & \text { Select tool radius co } \\
& \text { COMP (RO) soft key. }\end{aligned}\)
 is displayed.

Traverse the Y axis until the display value is zero. The square in the graphic positioning aid is now centered between the two triangular marks.

Once the axis is moved to zero it will increment to next block.


Select the \(Z\) axis key.

\section*{NOMINAL POSITION VALUE}
- 12 Enter the nominal position value for the hole depth: \(Z=-12 \mathrm{~mm}\)
\(\square\) Press USE soft key. The graphic positioning aid for the Z axis is displayed.

Drill hole 2: Traverse \(Z\) axis until the display value is zero. The square in the graphic positioning aid is now centered between the two triangular marks.

Retract the drill in the tool axis (Z).
Once the axis is moved to zero the operation is complete.

Press the NEXT BLOCK soft key.

\section*{I-5 Milling Patterns}

\section*{This chapter describes the hole pattern functions CIRCLE PATTERN, LINEAR PATTERN, RECTANGLE POCKET.}

In the operating mode DISTANCE-T0-GO, use the soft keys to select the desired hole pattern function or pocket milling, and enter the required data. This data can usually be taken from the workpiece drawing (e.g. hole depth, number of holes, dimensions of the pocket, etc.).

With hole patterns, the POSITIP 880 then calculates the positions of all the holes and displays the pattern graphically on the screen. With pocket milling, it calculates all of the traverse paths for the roughing execution, enabling you to position simply by traversing to display value zero.

\section*{Circle Pattern}

\section*{Automatic advance function}

Once you have moved the table into position and machined to depth, the POSITIP 880 will automatically advance. You can also manually advance by pressing the NEXT HOLE soft key.
```

$m$ POSITIP 880 will not automatically advance if the depth is
013
set to THRU.

```

Information required:
- Pattern type (full or half)
- Holes (no. of)
- Center (center of circle pattern in pattern plane)
- Radius (defines radius of the circle pattern)
- Start angle (angle of 1 st hole in the pattern)
- Step angle (optional: this only applies if creating a circle segment.)
- Depth (the target depth for drilling in the tool axis)

POSITIP 880 calculates the coordinates of the holes which you then move to simply by traversing to display value zero. The graphic positioning aid is available for all moving axes.

A circle pattern is executed as a series of presets to the hole location in the pattern plane and the drill depth.

Functions for drilling
\begin{tabular}{ll} 
Function & Soft key \\
\hline Press to go to previous hole. & \begin{tabular}{c} 
PREVIDUS \\
HOLE
\end{tabular} \\
\hline Press to manually advance to the next hole. & \begin{tabular}{c} 
NEXT \\
HOLE
\end{tabular} \\
\hline Press to end drilling. & END \\
\hline
\end{tabular}

\section*{Example: Enter data and execute a circle pattern. See Fig. I. 35 \&} Fig. I. 36 .
Holes (no. of): 4
Coordinates of center: \(X=50 \mathrm{~mm} / \mathrm{Y}=50 \mathrm{~mm}\)
Bolt circle radius: 20 mm
Start angle: Angle between X axis and first hole: \(30^{\circ}\)
Hole depth: \(Z=-5 \mathrm{~mm}\)

\section*{1st step: Enter data}

Operating mode: DISTANCE-TO-GO

(4) Enter the number of holes (4).

Press ENT.


Fig. I. 35 CIRCLE PATTERN form


Fig. I. 36 Circle pattern graphic

50 Enter the \(X\) and \(Y\) coordinates of the circle center (both 50).


Press ENT.

\section*{RADIUS}


Enter the radius of the circle pattern (20).
Press ENT.

START ANGLE
30 Enter the start angle ( \(30^{\circ}\) ).
Press ENT.


DEPTH
Enter the depth of each hole (-5.0).


Press ENT.

\section*{wh}

When in TOOL field enter the TOOL TABLE and select the desired tool.

\section*{Move to hole:}

Traverse each coordinate of the working plane to display value zero.

\section*{Drill:}
Traverse to display value zero in the tool axis. When you have reached required depth, it will automatically advance to the coordinates of the next hole.

After drilling, retract the drill in tool axis.

\section*{NEXT HOLE}

Press the NEXT HOLE soft key.

Continue to drill the remaining holes in the same way.

\section*{Linear Pattern}

Information required:
- First hole (1st hole of the pattern)
- Holes per row (number of holes in each row of pattern
- Hole spacing (the spacing or offset between each hole in the row)
- Angle (the angle or rotation of the pattern)
- Depth (the target depth for drilling in the tool axis)
- Number of rows (number of rows in the pattern)
- Row spacing (the spacing between each row of the pattern)

POSITIP 880 calculates the coordinates of the holes which you then move to simply by traversing to display value zero.

The graphic positioning aid is available for all moving axes.
The graphic enables verification of the hole pattern before you start machining. It is also useful when:
- selecting holes directly
- executing holes separately
- skipping holes

\section*{Example: Entering data and executing linear pattern. See Fig. I. 37}

\section*{\& Fig. I.38.}

First \(X\) coordinate of hole: \(X=20 \mathrm{~mm}\)
First \(Y\) coordinate of hole: \(Y=15 \mathrm{~mm}\)
Number of holes per row: 4
Hole spacing: 10 mm
Tilt angle: \(18^{\circ}\)
Hole depth: \(\mathrm{Z}=\) THRU
Number of rows: 3
Row spacing: 12 mm


Fig. I. 37 LINEAR PATTERN input form


Fig. I. 38

4 ENT
HOLE SPACING


Press ENT

\section*{ANGLE}

18 Enter the angle of rotation ( \(18^{\circ}\) ).


Press ENT


USE
Press USE.
Press the VIEW () soft key to see graphic.

Start linear hole pattern function.
After drilling, retract the drill in tool axis.
Traverse each coordinate of the working plane to
display value zero.

\section*{Milling a Rectangle Pocket}

In the operating mode DISTANCE-T0-G0 you can use the POSITIP 880 for milling a rectangle pocket.
The information for rectangle pocket milling can also be written to a machining program as a cycle.

Select the cycle with the RECTANGLE POCKET soft key, and enter the required data. This data can usually be taken quite easily from the workpiece drawing (e.g. the axis size and the depth of the pockets).
The POSITIP 880 calculates the rough-out paths and offers graphic positioning aid.

\section*{Finish allowance}

The amount of material to be left for machining on the last pass around the pocket.

\section*{Rectangle pocket milling in programs}

The POSITIP 880 makes the roughing out of rectangle pockets simple: You just enter the dimensions for the pocket, and the POSITIP 880 calculates the rough-out paths.

Execution of cycle
The execution of the cycle is represented in the figures to the right.

\section*{Step 1:}

The POSITIP 880 gives the distances-to-go for positioning the tool at the starting position A : First in the tool axis, and then in the machining plane to the center of the pocket.

\section*{Step 2:}

Roughing out the pocket in accordance with the path indicated in the diagram climb milling (see Step 2). In the working plane the stepover is no greater than the radius of the current tool. The stepover distance of the last pass around the pocket is equal to the finish allowance. The operator chooses the appropriate pecking depth in the tool axis.

\section*{Step 3:}

This procedure repeats itself until the entered depth \(B\) is reached.
Input into cycle for RECTANGLE POCKET
- Starting position
(enter absolute value, referenced to datum)
- End depth
(enter absolute value, referenced to datum)
- Center in X

Center of the pocket in the main axis of the working plane.
- Center in Y

Center of the pocket in the secondary axis of the working plane.
- Size length in \(X\)

Length of the pocket in the direction of the main axis.
- Size length in \(Y\)

Length of the pocket in the direction of the secondary axis.
- Direction (counter-clockwise or clockwise)
- Finish allowance

Finishing allowance in the working plane.


Step 1 in rectangle pocket


Step 2 in rectangle pocket


Step 3 in rectangle pocket

Programming example: Mill rectangle pocket. See Fig. I. 39 \& Fig.

\section*{l.40.}

Starting position: 2 mm
Milling depth: -20 mm
Pocket center in \(X: 50 \mathrm{~mm}\)
Pocket center in \(\mathrm{Y}: 40 \mathrm{~mm}\)
Side length in \(X: 80 \mathrm{~mm}\)
Side length in Y : 60 mm
Direction: CCW
Finishing allowance: 0.5 mm
Example: Entering rectangle pocket data into a program
Operating mode: DISTANCE-TO-GO
```

FEATURES... Press FEATURES.

```

\section*{RECTANGLE \(\quad\) Press RECTANGLE POCKET.}

START DEPTH


Enter the start depth ( 2 mm ). Press ENT.

END DEPTH


Enter the end depth (- 20 mm ).
Press ENT.

\section*{CENTER}


Enter the X and Y dimensions for the pocket center.
Press ENT.
4
0
SIZE


Enter the X and Y dimensions for the side.
Press ENT.
60

\section*{DIRECTION}

CCW
Enter the direction of rotation (counter-clockwise).
Press ENT.


Fig. I. 39 Rectangle pocket programming example

Fig. I. 40 Rectangle pocket programming graphic


Wh When you cursor to the TOOL field, press TOOL TABLE soft key. Select tool and press USE. Tool will enter into the TOOL field.

\section*{2nd step: Mill a rectangle pocket}

After you have entered all of the required data, start the RECTANGLE POCKET cycle and position the axes by traversing to zero. The pecking depth in the tool axis does not have to be preset. End the cycle after the pocket has been milled pressing END.

\section*{I-6 Programming POSITIP 880}

\section*{Program Capabilities}

Operating mode: PROGRAMMING
This section describes the programming capabilities of the POSITIP 880. The programs can be edited in program memory and executed in the EXECUTE PROGRAM mode. The operator can load, save or delete a program from internal storage in FILE OPERATIONS. The CLEAR function clears the current program in memory. See Fig. I.41.
\begin{tabular}{lc|}
\hline Function & Soft key \\
\hline Allows access to all programming features. & \begin{tabular}{c} 
PROGRHMIING \\
FEATURES...
\end{tabular} \\
\hline \begin{tabular}{l|c} 
Allows the operator to load, save, delete or \\
clear a program.
\end{tabular} & \begin{tabular}{c} 
FILE \\
OPERATIONS...
\end{tabular} \\
\hline \begin{tabular}{l} 
Allows the operator access to all block \\
functions.
\end{tabular} & \begin{tabular}{c} 
BLOCK \\
FULCTIONS... \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Editing and moving through a program}
- Press Up/Down Arrow keys to move the program block highlight cursor to the next or previous block. The highlight cursor will wrap around the first and last blocks in the program.
- To move to a specific block number in the current program, enter a number and press ENT.
- To insert a new step in the current program, press PROGRAM FEATURES soft key and select the desired block. The block is inserted above the block currently highlighted.
- To edit the block currently highlighted, press the ENT key.
- To delete the block currently highlighted from the program, press the CE key.


Fig. I. 41 Program function screen

\section*{Programming Features}

The PROGRAMMING mode has a PROGRAMMING FEATURES soft key which shows all the blocks that can go into a program. Below is a list of PROGRAMMING FEATURES soft keys.

Operating mode: PROGRAMMING
\begin{tabular}{|c|c|}
\hline Function & Soft key \\
\hline Opens the TOOL CALL block which is used to select a specific tool number from the tool table at run-time. & TOOL CALL \\
\hline DATUM CALL is used to select a datum at runtime. & DATUM CALL \\
\hline PRESET is used to locate a target position on an axis. The PRESET form allows for entering one or more axis values. Each axis value will be entered as a separate preset block. & PRESET \\
\hline Opens CIRCLE PATTERN form. Refer to the Milling Patterns chapter for performing circle patterns. & CIRCLE PATTERN \\
\hline Opens LINEAR PATTERN form. Refer to the Milling Patterns chapter for performing linear patterns. & \[
\begin{aligned}
& \text { LINEAR } \\
& \text { PATTERN }
\end{aligned}
\] \\
\hline Opens the RECTANGLE POCKET form. Refer to the Milling Patterns chapter for performing rectangle pockets. & \[
\begin{aligned}
& \text { RECTANGLE } \\
& \text { POCKET }
\end{aligned}
\] \\
\hline Opens the LABEL NUMBER form to mark the beginning and the end of a subprogram & \[
\begin{aligned}
& \text { LABEL } \\
& \text { NUMBER }
\end{aligned}
\] \\
\hline LABEL CALL (REPEAT) is used to call a subprogram 1 or more times. It allows the subprogram to be offset a specified amount on each iteration. & \(\underset{(\text { REPEAT })}{\text { LABEL CALL }}\) \\
\hline LABEL CALL (Rotate) allows blocks within a subprogram to be rotated a specified amount on each iteration. & \[
\underset{(\text { ROTATE })}{\text { LABEL CALL }}
\] \\
\hline LABEL CALL (MIRROR) allows blocks within a subprogram to be inverted over an axis to represent a mirror image of that subprogram. & \(\underset{(\text { MIIRROR })}{\text { LABELCALL }}\) \\
\hline POSITION DRILL soft key opens the program form for position drill jobs. & POSITION /
DRILL \\
\hline LINE soft key opens the program form for milling a line. & LINE \\
\hline
\end{tabular}
\begin{tabular}{lc|}
\hline Function & Soft key \\
\hline \begin{tabular}{l} 
ARC soft key opens the program form for \\
milling an arc.
\end{tabular} & ARC \\
\hline \begin{tabular}{l} 
BLEND soft key opens the program form and \\
NORMAL ARC, INVERTED ARC and CLOSED \\
CONTOUR soft keys for performing a blend.
\end{tabular} & BLEND \\
\hline \begin{tabular}{l} 
CHAMFER soft key opens the program form \\
and the CLOSED CONTOUR soft key to create \\
a chamfer.
\end{tabular} & CHAMFER \\
\hline \begin{tabular}{l} 
MORE soft key allows the operator to toggle \\
through the different soft keys rows.
\end{tabular} & \\
\hline
\end{tabular}

\section*{Tool Call}

The TOOL CALL is used to select a specific tool number from the tool table at run-time, for instance during a program. The block specifies a tool number and an optional tool axis. See Fig. I. 42.

\section*{Calling a tool}

Refer to Job Setup for how to enter the length and diameter of your tools in the tool table.

The TOOL CALL command automatically pulls the tool length and diameter from the tool table.

You may define the tool axis for the program run in the TOOL CALL block.

\section*{Tool axis setting}

A tool axis is selected to define the machining plane. Tool radius compensation is applied to the axes forming the machining plane. Tool length compensation is applied along the tool axis.

For example, a horizontal boring machine may have machining features such as hole patterns located in the YZ plane. The boring operations are performed in the \(X\) axis. For this configuration, the tool axis would be set to the \(X\) axis.
\(\square\) Press the TOOL AXIS soft key.
\(\square\) Select the tool axis with soft key.
- Press USE.


When you execute a tool call block with a new tool axis, this tool axis will remain in effect until you select another from the tool table or another tool call block.

To perform a tool call
Operating mode: PROGRAMMING


TOOL NUMBER
The tool number defaults to the previous tool block's number. Enter the desired value by using the numeric key pad or press the TOOL TABLE soft key. (The SIZE and TOOL TYPE fields are read only.) Press ENT.


Fig. I. 42 TOOL CALL form

\section*{TOOL AXIS (OPTIONAL)}

Entering the tool axis (such as \(Z\) ) is optional. It is used to set the tool axis at run-time. An axis may be selected by using the axis ( \(\mathbf{X}, \mathbf{Y}, \mathbf{Z}\) ) soft keys. Press ENT. The program contains the tool call block TOOL CALL 1 Z.

CE
Choose CE to clear any tool axis selection.

Press USE.

\section*{Datum Call}

The DATUM CALL block is used to select a datum at run-time. See Fig. I.43.

\section*{Datum call}

The POSITIP 880 can store up to 99 datums in a datum table. You can call a datum point from the datum table during a program run by simply pressing the DATUM CALL soft key and entering the block DATUM XX. This automatically calls the datum point entered for \(\mathbf{X X}\) during program run.

Operating mode: PROGRAMMING


Press the PROGRAMMING FEATURES soft key.

\section*{DATUM \\ CALL}

Select the DATUM CALL soft key. Call a datum point from the table.

\section*{DATUM NUMBER}

\section*{5}

Enter the datum number (such as 5). Press USE. Input range: 0 to 99 .

USE
DATUM \#5 will appear within the block.


Fig. I. 43 DATUM CALL form

\section*{Presets}

The operator uses the PRESET function to establish a nominal position on an axis to which to move. Use the PRESET form to enter the desired preset value. The PRESET form allows for entering one or more axis presets. However, multiple axis presets are entered into the program as separate preset blocks. See Fig. I.44.

\section*{Entering a Preset}

An axis preset involves entering a target value, selecting a preset type (ACT or INC), and selecting a tool offset.
```

006

```

If the PRESET soft key is used, the cursor defaults to the first axis field.

Operating mode: PROGRAMMING
\begin{tabular}{c|c}
\begin{tabular}{c}
\(\substack{\text { PROGRAMMING } \\
\text { FEATURES... }}\)
\end{tabular} & Press the PROGRAMMING FEATURES soft key. \\
\cline { 1 - 1 } PRESET & Select the PRESET soft key or one of the axis keys. \\
\cline { 1 - 1 } &
\end{tabular}

\section*{NOMINAL VALUE}


Enter a nominal value using the numeric keys.
Press the Incremental hard key to toggle between ACT and INC preset types. For an ACT preset, the nominal value is relative to the current datum (at runtime). For an INC preset, the nominal value is relative to the previous nominal location.

\section*{TOOL OFFSET}
```

TOOL COMP
(RO)

```

Press the T00L COMP (RO) soft key to toggle through the R+ (add radius), R- (subtract radius) or R0 (no compensation) choices. Enter the value and
```

    USE
    ```
    Press USE.

\section*{Hole Patterns and Rectangle Patterns}

See the Milling Patterns section for programming information on circle patterns, linear patterns and rectangle patterns.

\section*{Subprograms}

\section*{Subprograms}

A subprogram is a subsection of blocks within a program which can be called from another block within the program. The subprogram blocks are programmed once, but may be run multiple times. A subprogram can also be mirrored. See Fig. I. 45.

\section*{Nesting subprogram}

Subprograms can also be "nested." For example, a subprogram can in turn call another subprogram.


Fig. I. 45 Subprogram


Fig. I. 46 LABEL form

\section*{Label Number}

Label numbers 1 to 99 identify the beginning of a subprogram.

\section*{Label 0}

Label 0 is used only to identify the end of a subprogram. An end label is optional. If not used, the subprogram will end either at the block from which the subprogram was called or after the last block in the program.

\section*{Label Call}

In the program, subprograms and program sections are called with the command LBLCALL, such as LABEL CALL (REPEAT), LABEL CALL (ROTATE), LABEL CALL (MIRROR).

The command LBL CALL 0 is not allowed.
After a LBL CALL block is inserted into the program, POSITIP 880 executes the called subprogram.

\section*{LABEL CALL REPEAT}

This form is used to call a subprogram 1 or more times. It allows the subprogram to be offset a specified amount on each iteration. See Fig. I. 47.

\section*{LABEL CALL ROTATE}

This form allows blocks within a subprogram to be rotated a specified amount on each iteration.

\section*{LABEL CALL (MIRROR)}

This form allows blocks within a subprogram to be inverted over an axis to represent a mirror image of that subprogram.

The beginning of a subprogram (or a program section repeat) is now marked with the label. Enter the program blocks for the subprogram after the LBL block.

Label 0 is used only to identify the end of a subprogram.


Fig. I. 47 LABEL CALL REPEAT form


After the LBL CALL block in the operating mode EXECUTE PROGRAM, the POSITIP 880 executes those blocks in the subprogram that are located between the LBL block with the called number and the next block containing LABEL 0 . All subprograms should start with a label number ( 1 to 99 ) and end with a label 0.

\section*{Position Drill}

Point X1: 20 mm
Point Y1: 20 mm
Depth: \(Z=-12.00\) ABS
POSITION DRILL function will move your table to the position you want based upon your desired \(X\) and \(Y\) values.

In the operating mode PROGRAMMING you can use the POSITIP 880 for a position drill.
Select the cycle with the POSITION/DRILL soft key, and enter the required data. See Fig. I.48. This data can usually be taken quite easily from the workpiece drawing.
Example: Enter data for a position drill
Operating mode: PROGRAMMING

\section*{PROGRAMMING FEATURES..}

Press the PROGRAMMING FEATURES soft key.
Press MORE soft key.
MORE...

POSITION /
Press the POSITION/DRILL soft key. DRILL

Begin data entry.

\section*{X}

\section*{20 Enter the point for \(X\). Press ENT.}

\section*{Y}

\section*{20}

Enter the point for Y. Press ENT.

\section*{DEPTH}

12
Enter the cut depth. Press ENT.


Fig. I. 48 POSITION/DRILL form

\section*{Milling a Line}

In the operating mode PROGRAMMING you can use the POSITIP 880 for milling a line.

Lines are defined by their "FROM" point (the point where they begin) and "TO" point (the point where they end).

There are two ways you can program a line:
- With four coordinates(X1, Y1) (X2, Y2)
- With three of the coordinates above (X1, Y1) or (X2 or Y2) and an angle.
Choose a method based upon the information available from your print.

Select the cycle with the LINE soft key, and enter the required data. See Fig. I.49. This data can usually be taken quite easily from the workpiece drawing.

The POSITIP 880 calculates the tool path and offers graphic positioning aid.


Fig. I. 49 MILL LINE form

\section*{Example: Enter data and mill a line}

From point \(\mathrm{X} 1: 4 \mathrm{~mm}\)
From point Y1: 2 mm
To point X2: 2 mm
To point Y2: 2 mm
Depth: \(Z=4.00\)
Tool offset: Center
1st step: Enter data for a line
Operating mode: PROGRAMMING

\section*{PROGRAMMING Press the PROGRAMMING FEATURES soft key, then the FEATURES... MORE soft key.}

\section*{MORE...}

LINE
Press the LINE soft key.

Beginn data entry.
FROM X1

4 Enter the from point for \(X\). Press ENT.

FROM Y1

\section*{2}

Enter the from point for Y . Press ENT.

\section*{2}

TO Y2

\section*{2}

DEPTH
4
TOOL OFFSET
```

CENTER

```
```

USE

```

Enter the tool offset. Press ENT.

Press USE.

\section*{Milling an Arc}

In the operating mode PROGRAMMING you can use the POSITIP 880 for milling an arc. See Fig. I.50.

There are two ways you can program an arc:
- With a from point, to point and a radius
- With a from point, to point and a center point

Choose a method based upon the information available from your print.


Fig. I. 50 MILL ARC form

Major and Minor Arcs - A Major arc has a sweep angle greater than 180 degrees. A Minor arc has a sweep angle less than 180 degrees. See Fig. I. 51 as a graphic example of the two types of angles.

\section*{Example: Enter data and mill an arc}

From point X1: 6 mm
From point \(\mathrm{Y} 1: 3 \mathrm{~mm}\)
To point X2: 3 mm
To point Y2: 6 mm
Depth: Thru
Radius: 2.24, < \(180^{\circ}\)
Direction: CW
Tool offset: Center
1st step: Enter data for an arc
Operating mode: PROGRAMMING


\section*{3}

Enter the to point for X. Press ENT

TO Y2

\section*{6}

Enter the to point for Y. Press ENT

\section*{CUT DEPTH}

RADIUS


Enter the size of the radius.
Press MINOR ARC soft key. Press ENT.

\section*{DIRECTION}


TOOL OFFSET


Enter the tool offset. Press ENT.
Press USE.

\section*{Blend}

A blend is a semi-circular fillet which connects two adjacent blocks within a program. The two blocks may be two lines, two arcs, or a line and an arc. The POSITIP 880 calculates the location of the arc to transition smoothly from the previous block to the next. The two blocks do not have to intersect or touch; however, if they do not touch, the blend arc must be large enough to connect them. The blend arc can be specified as "normal" or "inverted". The blend step cannot be executed as a single cycle operation. See Fig. I. 53 as a graphic example of different types of blends.
A blend usually connects the previous block in the program with the next block to form a continuous path. It is also possible to have the blend connect the previous block to the first block within the current continuous path.

To close the path using a blend, enter the blend's radius and press the CLOSE CONTOUR soft key. See Fig. I.52.


Fig. I. 52 Input parameters for a blend

Operating mode: PROGRAMMING

\section*{PROGRAMMING FEATURES...}

Press the PROGRAMMING FEATURES soft key.

\section*{MORE.}

Press the MORE soft key twice.

BLEND
Press the BLEND soft key.
The "FROM" and "TO" fields are read only. They are automatically filled when the BLEND form is opened.

The "TO" field changes with the CLOSE CONTOUR soft key state.

\section*{BLEND ARC RADIUS}

Enter the blend arc radius by using the numeric keys.

\section*{BLEND TYPE}


Enter type of radius (normal, inverted).

\section*{CLOSE CONTOUR}

\section*{CLOSE CONTOUR}

Press CLOSE CONTOUR to set the first step in the continuous path.

Pressing the CLOSE CONTOUR soft key causes the blend to connect the first block in the current path instead of the next block. The block number shown in the "TO" field will change.

When the desired data has been entered, press USE.


Fig. I. 53 Examples of how blend can be used

A chamfer is an angled cut which connects two adjacent line blocks within a program. The POSITIP 880 calculates the location of the chamfer. The two lines do not have to intersect or touch, however, if they do touch, the lengths are calculated from their intersection points. See Fig. I. 55 as a graphic example of a chamfer.
A chamfer usually connects the previous block in the program with the next block to form a continuous path. It is also possible to have the chamfer connect the previous block to the first block within the current continuous path. This "closes" the path.

Intersecting lines - You can insert a chamfer between two intersecting lines that are adjacent in the program sequence. See Fig. I.54.

A chamfer step can be specified by:
Length 1 and length 2, the angle is blank.
Length 1 or length 2 and the angle.
\[
\begin{aligned}
& \text { The axis lines must show they are currently at or will come } \\
& \text { to a point of connection in order to create a chamfer. }
\end{aligned}
\]

Operating mode: PROGRAMMING


Press the PROGRAMMING FEATURES soft key.
```

MORE...

```

Press the MORE soft key twice.

\section*{CHAMFER}

Press the CHAMFER soft key.
The "FROM" and "TO" fields are read only. They are automatically filled when the CHAMFER form is opened.

CLOSE
CONTOUR
To close the path using a chamfer, enter the chamfer's data and press the CLOSE CONTOUR soft key.


Fig. I. 54 Input parameters for a chamfer


Fig. I. 55 Example of a chamfer

\section*{LENGTH 1}

Enter the distance from the point of intersection on the line in the "FROM" step. Use the numeric keys to enter the distance.

\section*{LENGTH 2}

Enter the distance from the point of intersection on the line in the "TO" step.

\section*{ANGLE}

Enter the angle measured from the line along the \(X\) axis and sweeps toward the adjacent line. Use the numeric keys to enter the angle.

\section*{CLOSE CONTOUR}

CLOSE CONTOUR

Pressing the CLOSE CONTOUR soft key causes the chamfer to connect the first block in the current path instead of the next block. The block number shown in the "TO" field will change.

File Operation Soft Keys
\begin{tabular}{|c|c|}
\hline Function & Soft key \\
\hline Load from internal storage or to current program memory & LOAD \\
\hline Save current program in memory to internal storage & SAVE \\
\hline Delete program from internal storage & DELETE \\
\hline Clear current program in memory & CLEAR \\
\hline Select a directory for internal storage & \[
\begin{aligned}
& \text { SELECT } \\
& \text { IIRECTORY }
\end{aligned}
\] \\
\hline Create a name for a new directory & CREATE
DIRECTORY \\
\hline Delete a directory from internal storage & DELETE
DIRECTORY \\
\hline Allows the operator to transfer a program from an external device into POSITIP 880's program memory. & IMPORT
PROGRAM \\
\hline Allows the operator to transfer a program from POSITIP 880 to an external device (PC or printer). & EXPORT
PROGRAM \\
\hline
\end{tabular}

\section*{Loading, saving, deleting \& clearing a program}

POSITIP 880 allows you to load programs from internal storage to current program memory.

To load or delete a program:
```

    FLLE Press the FILE OPERATIONS soft key.
    OPERATIONS...
LOAD
Press the LOAD soft key.
Choose the desired program and press LOAD.
LOAD
Confirm with YES. Follow the same procedure for
deleting a program, except press DELETE soft key.

```

To save a program:
\begin{tabular}{|c|c|}
\hline FILE OPERATIONS... & ess the FILE OPERATIONS soft key. \\
\hline SAVE & \multirow[t]{2}{*}{\begin{tabular}{l}
Press SAVE soft key. \\
To spell the name of the new program, use the LEFT and RIGHT soft keys and the Up/Down arrow keys to move through the selection of alphabetized characters.
\end{tabular}} \\
\hline & \\
\hline \[
\begin{aligned}
& \text { SELECT } \\
& \text { CHARACTER }
\end{aligned}
\] & Choose desired characters, by pressing the SELECT CHARACTER soft key to spell the name of the new program. \\
\hline & To enter numerals in the name, press the numeric keypad. \\
\hline & Use CE key to backspace. \\
\hline SAVE & When you have completed spelling the new program name, select the SAVE soft key. \\
\hline
\end{tabular}

To clear a program:
```

    FILE Press the FILE OPERATIONS soft key.
    OPERATIONS.
clear Press CLEAR soft key. Confirm with Yes.

```

\section*{Directories}

POSITIP 880 allows the operator to create directories in which to maintain and store part programs. Press the MORE soft key to access these functions.
\begin{tabular}{lc|}
\hline Function & Soft key \\
\hline Select a directory & \begin{tabular}{c} 
SELECT \\
DIRECTORY
\end{tabular} \\
\hline Create a name for a new directory & \begin{tabular}{c} 
CREATE \\
DIRECTORY
\end{tabular} \\
\hline Delete a directory & \begin{tabular}{c} 
DELETE \\
DIRECTORY
\end{tabular} \\
\hline
\end{tabular}

To select a directory:
\begin{tabular}{|c|c|}
\hline FILE OPERATIONS.. & Press the FILE OPERATIONS soft key. \\
\hline MORE... & Press MORE soft key. \\
\hline \[
\begin{aligned}
& \text { SELECT } \\
& \text { DIRECTORY }
\end{aligned}
\] & Press the SELECT DIRECTORY soft key. \\
\hline SELECT & Choose the desired directory and press SELECT. \\
\hline
\end{tabular}

\section*{Creating a directory}

To create a directory:
```

OPERATIONS.
Press the FILE OPERATIONS soft key.

```
    MORE...
    MORE...
    CREATE
    DIRECTORY

Press MORE soft key.

Press CREATE DIRECTORY soft key.
Spell the name of the new directory, using the LEFT and RIGHT soft keys and the Up/Down arrow keys to move through the selection of alphabetized characters.

To enter numerals to the name use the numeric keypad

Choose desired characters, by pressing the SELECT CHARACTER soft key

Use CE key to backspace.

CREATE
When you have completed spelling the new directory name, select the CREATE soft key.

To delete a directory:
\begin{tabular}{|c|c|}
\hline FILE OPERATIONS... & Press the FILE OPERATIONS soft key. \\
\hline MORE... & Press MORE soft key. \\
\hline \[
\begin{aligned}
& \text { DELETE } \\
& \text { DIRECTORY }
\end{aligned}
\] & Press the DELETE DIRECTORY soft key. \\
\hline DELETE & Choose the desired directory and press DELETE Confirm with Yes. \\
\hline
\end{tabular} such as a PC for external data storage.
Pin layout, wiring and connections for the data interface
see Chapter II-4 Data Interface. see Chapter II-4 Data Interface.

If the device is not properly connected you will receive an error message.

\section*{Example: Importing a program into POSITIP 880}

Operating mode: PROGRAMMING
```

    FILE . Press the FILE OPERATIONS soft key.
    OPERATIONS...
MORE... Press the MORE soft key twice.

```
IMPORT PROGRAM
    IMPORT
    PROGRAM

Press the IMPORT PROGRAM soft key.
Setup the PC host terminal program to send the program file as ASCII text data.

If you are importing programs into POSITIP 880 from a PC, the PC must send the programs.

POSITIP 880 will load the new program into program memory only. You will have to save it to internal storage if necessary. The external device (PC) must be connected through the serial port.

\section*{Exporting a Program}

Example: Exporting a program from POSITIP 880


A block is a single step or a series of steps that make up a program.
Operating mode: PROGRAMMING
Press the BLOCK FUNCTIONS soft key.
\begin{tabular}{lc|}
\hline Function & Soft key \\
\hline \begin{tabular}{l} 
This feature will "explode" a program block \\
into several more detailed blocks. Applies to \\
hole patterns and REPEAT, ROTATE and \\
MIRROR blocks.
\end{tabular} & EXPLODE \\
\cline { 2 - 3 } & \\
\hline Change depth or offset for a range of blocks. & \begin{tabular}{c} 
CHANGE \\
BLOCKS
\end{tabular} \\
\hline Delete a range of blocks from current program. & \begin{tabular}{c} 
DELETE \\
BLOCKS
\end{tabular} \\
\hline \begin{tabular}{ll} 
Copy a range of blocks within the current \\
program.
\end{tabular} & \begin{tabular}{c} 
COPY \\
BLOCKS
\end{tabular} \\
\hline \begin{tabular}{l} 
Move a range of blocks within the current \\
program.
\end{tabular} & \begin{tabular}{c} 
MOVE \\
BLOCKS
\end{tabular} \\
\hline \begin{tabular}{l} 
Reverse order of blocks in a path and the \\
"from" and "to" points in each block.
\end{tabular} & \begin{tabular}{c} 
REVERE \\
PATH
\end{tabular} \\
\hline \begin{tabular}{l} 
Adjusts the end point of current block and start \\
point of the next block to the intersection point \\
of the two features.
\end{tabular} & \begin{tabular}{c} 
TRIM \\
NEXT
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|c|}
\hline Function & Soft key \\
\hline \begin{tabular}{l} 
Adjusts the start point of current block and end \\
point of the previous block to the intersection \\
point of the two features.
\end{tabular} & TRIM \\
PREVIOUS
\end{tabular}

\section*{Explode}

This feature will "explode" a program block into several more detailed blocks. You can explode hole functions and CALL LABEL REPEAT, ROTATE and MIRROR. The step that you exploded will be replaced with the individual lines and arcs (CALL LABEL REPEAT, ROTATE and MIRROR) or positions (hole patterns) that made up the original block.

Highlight the block you want to explode

Press the BLOCK FUNCTIONS soft key.

EXPLODE
Press the EXPLODE soft key.

Operating mode: PROGRAMMING
\begin{tabular}{c|c}
\hline \begin{tabular}{c} 
CHANGE \\
BLOCKS
\end{tabular} & \begin{tabular}{l} 
From within BLOCK FUNCTIONS, press the CHANGE \\
BLOCKS soft key.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Select the range of blocks you want to change (FIRST \\
and LAST). Press ENT after each selection.
\end{tabular} \\
\hline THRU & \begin{tabular}{l} 
Enter the \(Z\) axis depth manually using either the \\
numeric keypad or select the THRU soft key. Press ENT.
\end{tabular} \\
\hline USE & \begin{tabular}{l} 
Enter the tool offset: LEFT, CENTER or RIGHT. Press \\
USE. This applies to lines and arcs within the range \\
only.
\end{tabular} \\
\hline
\end{tabular}

\section*{Deleting, copying and moving program blocks}

You can delete, copy or move a range of blocks.
When a block is deleted, POSITIP 880 automatically renumbers the remaining blocks. The block after the deleted block then becomes the current block.
Example: Delete program blocks
Operating mode: PROGRAMMING

\section*{DELETE \\ BLOCKS}

From within BLOCK FUNCTIONS, press the DELETE BLOCKS soft key.

Select the range of blocks you want to delete (FIRST and LAST). Press ENT after each selection.

Press USE


USE


Fig. I. 56 Changing a program block

Press USE.

\section*{Trim blocks}

You can trim, or connect, two adjacent line blocks using the trim feature. The trim feature connects the two blocks by extending each line to the point where they intersect.
\begin{tabular}{c} 
TRIM \\
NEXT \\
\hline
\end{tabular}

Move the cursor to the line block to be trimmed. Press the TRIM NEXT soft key. The end point of the current line and the start point of the next line will be set to the point where both lines intersect.

Move the cursor to the line block to be trimmed. Press the TRIM PREVIOUS soft key. The start point of the current line and the end point of the previous line will be set to the point where both lines intersect.

\section*{TRIM}

PATH
Move the cursor to the line block to be trimmed. Press the TRIM PATH soft key. The end point of the last line and the start point of the first line in the path will be set to the point where both lines intersect.

\section*{I-7 Executing a Program}

\section*{Preparing to Run a Program}

When you are ready to run a program, you must be in the EXECUTE PROGRAM mode. Press the EXECUTE PROGRAM hard key, then the FILE OPERATIONS soft key, press the LOAD soft key, scroll to the desired program, then press the LOAD soft key again. The current program block is displayed at the top of the screen.

\section*{Black to gray feature}

This feature is an on-screen visual aid. The axes that need to be moved into position will be shown in black in the axes bar. When you get into position they will switch to gray. Note: If your depth axis is set to THRU, the depth axis will not switch to gray.

\section*{Operating mode: PROGRAMMING}

You will be given a choice of how you want to run the program: Single block or automatic.

\section*{- Single block}

When you have moved the axis to the displayed position, call the next block with the NEXT BLOCK soft key. It is recommended that you use SINGLE BLOCK when running a program for the first time.

\section*{- Automatic}

Here the display automatically shows the next program block as soon as you have moved to the displayed position. Press AUTOMATIC when you are sure the program contains no errors and you want to run it quickly. When all displayed axes have switched to gray (indicating that they are in position) the program advances to the next block or hole.

\section*{Single block example}

Operating mode: EXECUTE PROGRAM

Select SINGLE BLOCK. The program block and the graphic positioning aid will appear (if currently in use).

Position by traversing to display value zero.

\section*{NEXT \\ BLOCK}

Call the next program block by pressing NEXT BLOCK.

Continue positioning and calling blocks with NEXT BLOCK until machining is complete.

\section*{Automatic example:}

Operating mode: EXECUTE PROGRAM


\section*{Program views}

The POSITIP 880 allows the operator to see several different views of the current operation. After choosing SINGLE BLOCK or AUTOMATIC to begin an operation, the soft key on the far left will offer several viewing options starting with VIEW (PGM/DRO). Toggle through to choose other view options.

Operating mode will automatically switch to: EXECUTE PROGRAM
\begin{tabular}{|c|c|}
\hline Function & View \\
\hline Shows all axis coordinates and each input parameter in the current operation. & \[
\begin{aligned}
& \text { VIEL.... } \\
& \text { (PGG/DRO) }
\end{aligned}
\] \\
\hline Shows enlarged view of axis display coordinates. & \[
\begin{aligned}
& \text { VIEH....) } \\
& (\text { OROD }
\end{aligned}
\] \\
\hline Shows the graphical layout of the current machining parameters. & VIEH....
(PGH/GRAPH) \\
\hline Shows the necessary feedback for precise positioning or for following a contour along the machining plane. & VIEH...
(CONTOUR) \\
\hline
\end{tabular}

\section*{Contour View}

The contour view is an optional display screen available when executing a program. The view will only appear if turned on. Refer to section I-8 Job Setup for instructions. See Fig. I. 58 \& Fig. I.59.

\section*{Graphic displays}

The contouring view provides the necessary feedback for positioning precisely or for following a contour along the machine plane.

The screen consists of a main view showing the tool path and hole locations, a smaller window showing the full part, and another smaller DRO window showing current position.

\section*{Main view}

The main view is used for finer positioning. It's scaling is such that one pixel on the display is equal to the finer of the \(X\) and \(Y\) axis display resolutions. This allows scale motion of 1 encoder pulse to be visually discernible.

A tool icon is fixed in the center of the view. The tool path is displayed relative to the tool. As the table is moved, the tool path moves relative to the tool only.

The tool icon is not displayed to scale. It represents the center of the tool only.

The tool path is offset from the programmed contour by the tool radius and tolerance band. The tool's path is relative to the tool selected.

Contour is turned on and off in JOB SETUP.

\section*{Contours}

For lines and arcs the tool path is shown. The tool path includes any offset specified in the program.
On either side of the tool path is a tolerance band. The tolerance band parameter is setup in JOB SETUP. The gap between the tool path and the tolerance band represents the allowable deviation from the tool path. The inside tolerance band is shown in red. The outside tolerance band is shown in green.


Fig. I. 58 Test program in contour view


Fig. I. 59 Test program in contour view

\section*{Positions and hole patterns}

For positions and hole patterns, the position or center of the hole is shown as a cross-hair.

A circle around the position/hole location represents the tolerance band. When the center of the tool icon is within the circle, the cutting is within the tolerance band.

\section*{Full part window}

The full part window provides for very coarse positioning. It shows the tool relative to the entire part. The scaling is such that the entire part will fit within the window with a small buffer all around.

The part profile is fixed. The tool icon is shown to scale using the current tool's radius. As the table moves, the tool icon moves relative to the part.

The shaded area represents the stock material. It is shown slightly larger than the part's extents. As the tool icon moves, the shading below the tool changes to background gray. This material removal allows the shading to be used as an indication of the material remaining.

The material removal mechanism functions only while the contouring view is shown. If the tool is moved while another view is selected, the affected material will not be removed in the contour view.

\section*{DRO window}

The contour view provides the necessary feedback for positioning precisely or for following a contour along the XY plane

The DRO window shows the distance-to-go positions for \(X, Y\) and \(Z\) axis. The DRO window allows viewing the position without switching to another view.

\section*{I-8 INFO Screen}

\section*{JOB SETUP Menu}

The JOB SETUP menu is accessed by pressing the INFO soft key the JOB SETUP soft key and then ENT. See Fig. I.60. When in the JOB SETUP menu, the following soft keys will be available:

\section*{- INSTALLATION SETUP}

Press to begin accessing the INSTALLATION SETUP parameters.
- IMPORT/EXPORT Press to begin importing or exporting the operating parameters.
- CANCEL CHANGES Will cancel all changes and exit from JOB SETUP back to the previous mode.
USE NEW SETTINGS Will save any changes to the configuration file before exiting.
- HELP

Will open on-line help.

\section*{General field/form navigation guide}
- Press Up/Down arrow keys to move between fields.
- Use keypad to enter numeric values within each field.
- Press ENT to confirm the entry within a field.
- Press USE when form is completed and save settings to the form.
- Press USE NEW SETTINGS to return to the INFO screen.

\section*{To access the JOB SETUP menu:}
\begin{tabular}{ll}
\hline INFO & Press the INFO soft key. \\
\hline \begin{tabular}{c|c}
\hline \begin{tabular}{l} 
JOB \\
SETUP
\end{tabular} & \begin{tabular}{l} 
Press the JOB SETUP soft key. \\
The cursor will default to the first selection on the \\
menu: TOOL TABLE
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}


Fig. I. 60 JOB SETUP screen in milling

\section*{Tool table (Milling only)}

The tool table will support up to 99 tools containing information on the diameter, length and type. The length offset may be entered as a known value or the POSITIP 880 may determine the offset automatically. See Fig. I.61.

The following soft keys are available:
\begin{tabular}{lc} 
Function & Soft key \\
\hline \begin{tabular}{l} 
Press to enter the tool offset length. Only \\
available in TOOL LENGTH field.
\end{tabular} & \begin{tabular}{c} 
TEACH \\
OFFSET
\end{tabular} \\
\hline \begin{tabular}{l} 
This will open the TOOL TYPES form for \\
selection. Only available in TYPE field.
\end{tabular} & \begin{tabular}{c} 
TOOL \\
TYPES
\end{tabular} \\
\hline \begin{tabular}{l} 
This key will sort all entered tools by type (i.e., \\
flat end mills with flat end mills, etc.).
\end{tabular} & \begin{tabular}{c} 
SORT BY \\
TYPE
\end{tabular} \\
\hline \begin{tabular}{l} 
This key will allow the operator to select \\
between tool axes (X,Y,Z).
\end{tabular} & \begin{tabular}{c} 
SELECT \\
TOOL AXIS
\end{tabular} \\
\hline
\end{tabular}


Fig. I. 61 Tool table in milling

\section*{Tool Table Usage}

\section*{Example: Entering the tool length and diameter into the tool table. See Fig. I. 62 \& Fig. I.63.}

Tool diameter 3.00
Tool length: 25.000
Tool unit: mm
Tool type: flat end mill
سीh It is also possible to have POSITIP 880 determine an offset. See alternative example below.
\begin{tabular}{|c|c}
\hline \begin{tabular}{c} 
INFO \\
\begin{tabular}{c} 
JOB \\
SETUP
\end{tabular} \\
\hline
\end{tabular} & Press the INFO soft key, then the JOB SETUP soft key. \\
\hline
\end{tabular}

The cursor will default to the TOOL TABLE field.


Press ENT.

\section*{TOOL TABLE}


Cursor to the tool you want to define or enter the tool number. Press ENT.

\section*{TOOL DIAMETER}

\section*{3}

Enter the tool diameter (3.0) and

press ENT.

Cursor will automatically move to the LENGTH field.


Fig. I. 62 Tool length and diameter entry

If a tool presetter is used to measure the length of a tool, enter the tool length ( 25 mm ) and press ENT.

It is also possible to have POSITIP 880 determine an offset. This method involves touching the tip of each tool to a common reference surface. This allows POSITIP 880 to determine the difference between the length of each tool.
Move the tool until its tip is touching the reference surface.
\begin{tabular}{c} 
TEACH \\
OFFSET \\
\hline
\end{tabular}

Press the TEACH OFFSET soft key. POSITIP 880 will calculate an offset relative to this surface. Press ENT.
Repeat the procedure for each additional tool using the same reference surface.

Only the tools set using the same reference surface may be changed without having to set the datum.

If the tool table already contains tools in which the length has been set, the reference surface should first be established using one of them. If not, you will not be able to switch between the new tools and the existing tools without having to re-establish the datum. Before adding the new tools, select one of the tools from the tool table. Touch the tool to the reference surface and set the datum to 0 .


Fig. I. 63 TOOL TYPE field

Cursor will automatically move to the UNIT field.

\section*{TOOL UNIT}
\(\square\) Enter the tool unit (inch/mm) and

\section*{ENT}
press ENT.
Cursor will automatically move to the TYPE field.

\section*{TOOL TYPE}

If you want to set the type, press TOOL TYPES soft key. Select from list and press ENT.

Press USE soft key twice, then the USE NEW SETTINGS soft key once.

\section*{USE NEW SETTINGS}
The tool table may be protected to prevent changes from
being made to the tool information. Refer to II-2
Installation Setup.

\section*{Tool axis setting}

A tool axis is selected to define the machining plane. Tool radius compensation is applied to the axes forming the machining plane. Tool length compensation is applied along the tool axis.

For example, a horizontal boring machine may have machining features such as hole patterns located in the YZ plane. The boring operations are performed in the \(X\)-axis. For this configuration, the tool axis would be set to the X -axis.
- Press the TOOL AXIS soft key.

Select the axis by pressing one of the soft keys.
Press USE, then USE NEW SETTINGS soft key.

Tool selection and tool axis selection take effect immediately. Pressing the CANCEL CHANGES soft key does not restore the previous settings.

\section*{Datum table (milling only)}

The datum table shows the absolute locations of the datums relative to the reference mark. Normally the datums are set using the datum and probe functions in actual value mode. It is also possible to set the datum values directly if necessary. See Fig. I.64.

Press the arrow keys to cursor to the datum you need and press ENT. The datum description form will appear.
- Use numeric keys to enter the desired values and press ENT for each axis. The values are measured from the reference marks.
- When you have finished entering values, press the USE soft key.

Resetting the datum table:
Press the RESET ALL DATUMS soft key to reset all axis values in the datum table.

\section*{aff}

Datum number 0 may be protected to prevent it from being changed. Refer to II-2 Installation Setup.

\section*{Display configuration}

The DISPLAY CONFIGURATION form is where the operator determines which axes are displayed and in what order. The DRO display may have 1 or 2 independent configurations.
- Press the NEXT AXIS soft key to toggle through the available axes.
- Press the CE key to turn off the axis display.
- The form is closed by pressing the CANCEL or USE soft keys.
- The factory default configuration for DRO 1 is \(1 \mathrm{st}=\mathrm{X}, 2 \mathrm{nd}=\mathrm{Y}\), and \(3 \mathrm{rd}=\mathrm{Z}\). The 4th, 5th, and 6th displays are OFF. The default for DRO2 is all displays OFF.
- When more than 1 configuration is available, the DRO VIEW soft key is used to toggle between DRO1 and DRO2. The current setting is shown on the soft key. On power up, the DRO display defaults to DRO1.

\section*{Scale factor}

The scale factor may be used to scale the part up or down from the programmed size. All displayed values are multiplied by the scale factor. Tool radius offsetting is not affected. A scale factor of 1.0 is used to create a part with the exact size as dimensioned on the print. See Fig. I. 65.
- The numeric keys are used to enter a number greater than zero. The range is 0.1000 to 10.000 .
- The scale factor settings will be retained on a power cycle. First-time power-up default setting is OFF with a value of 1.0000 .
\(\Rightarrow\) When the scale factor is a value other than 1 , the scaling symbol \(\nabla\) is shown on the axis display.


Fig. I. 64 Datum table in milling


Fig. I. 65 Scale factor

\section*{Edge finder (milling only)}

The diameter and length offset of the edge finder are set in this form. Both values are in the units indicated in the form.

The numeric keys are used to enter values of diameter and length. The diameter must be greater than zero. The length is a sign value (negative or positive).
Soft keys are used to select the units for the edge finder dimensions. The entered diameter and length values are not converted when the units are toggled.
The edge finder values will be retained on a power cycle.

\section*{Measured value output}

With the measured value output feature, the current axis display positions and probe measurement values can be sent over the serial and /or parallel ports. Output of the current display positions is activated via an external hardware signal (requires optional Auxiliary Machine Interface) or via a command (Ctrl B) sent to POSITIP 880 over the serial port.
The Measured Value Output form is used to set data output during probing operations to On or Off. It is also used to set the display freeze option.
\(\square\) Data Output Probing - This may be set to either On or Off. When On, the measurement data is output when the probe operation is completed.
- Display Freeze - Set to either:

■ Off - The display is not stopped during measured value output.
- Concurrent - The display is stopped during measured value output and remains stopped while the switching input is active.
\(\square\) Freeze - The display is stopped, but is updated by every measured value output.
Refer to chapter II-5 Measured Value Output for information on the format of the output data.

\section*{Graphic positioning aid}

The GRAPHIC POSITIONING AID form is used to configure the bar graph that is shown below the axes' DRO display in DISTANCE-TOGO mode. Each axis has its own range. See Fig. I.66.
- Press the \(\mathbf{O N}\) soft key to enable or simply begin entering values using the numeric keys. Enter default value of 5 mm .
> Only axes that have been setup in the AXIS CONFIGURATION will appear in the form. Graphic positioning aid will be retained on a power cycle.

\section*{Stopwatch}

The stopwatch shows the hours (h), minutes (m), seconds (s). It operates like a stop watch showing elapsed time.

The watch starts timing from 0:00:00 when the START soft key is pressed and stops when STOP is pressed.

It will be reset to 0:00:00 when RESET is pressed. Resetting will stop the watch if it is running.

The elapsed time field shows the total accumulated time from each interval.

All stop watch functions are applied immediately. When running, both the status bar and stop watch and the elapsed time field are updated in real-time.


Fig. I. 66 Graphic positioning aid

\section*{Units}

The UNITS form is used to specify the preferred display units and format. The system powers up with these settings in effect.
- Inch/MM - Measurement values are displayed and entered in the units selected in the DIMENSIONS field. Choose between INCH or MM soft keys.
- Decimal Degrees, Radians or Degrees/Minutes/Seconds (DMS) The ANGLE FORMAT field affects how angles are displayed and entered in forms. Choose between these three soft keys DECIMAL DEGREES, RADIANS or DMS.
CW/CCW - Direction fields in canned cycle forms default to the direction clockwise or counter-clockwise selected in the DIRECTION field.

\section*{Contour}

The CONTOUR form is used to enable or disable the feature and to set the tolerance bands.
- Press the ON soft key to enable the feature. The contour view will be available when executing a program.
- Press the OFF soft key to disable the feature.
- Enter a value for the inside tolerance. The inside tolerance is shown in red on the screen.
- Enter a value for the outside tolerance. The outside tolerance is shown in green on the screen.

\section*{Console adjustment}

The brightness can be adjusted for both the main console and the remote console. The form is also used to set the display saver's idle time-out.
The MAIN BRIGHTNESS field applies to the main console. The REMOTE SETTING applies to the remote console.

The display saver setting is the amount of time the system is idle before the display is turned off. The idle time may be set from 30 to 120 minutes. The display saver can be disabled during the current power cycle.

\section*{Installation Menu}

Refer to the Technical Information section for Installation Setup chapter.

\section*{Calculator}


Fig. I. 67 Calculator soft keys


Fig. I. 68 1st row calculator soft keys

\section*{Math functions (+, -, x, /)}

Math functions may be performed separately in the stand-alone calculator or directly in the field you're working in. For example, let's say we need to enter the radius of a circle pocket, but your print only shows the diameter, 6.25 . Here's an easy way to figure out the radius:
- Highlight the RADIUS field for the circle pattern.
- Using the keypad, enter the value for the diameter, 6.25.
- Press INFO.
- Press CALCULATOR.
- Press the TRIG soft key.
- Press the / soft key.
- Press the \(\mathbf{2}\) key.
- Press the ENT key. The answer, 3.125, will appear in the VALUE field.
- Press USE. Value will be shown in the RADIUS field.

> When you need to enter more than one calculation into a numeric field, the calculator will perform multiplication and division before it performs addition and subtraction. If you were to enter \(3+1 / 8\), POSITIP 880 will divide one by eight, then add three for an answer of 3.125 .

\section*{Trig functions}

As we showed above, when you're entering data for a milling or positioning function, your print may not provide you with all of the information you need. If an unknown value can be expressed as a trigonometry function, square root or the square of a number, POSITIP 880 can calculate the dimension for you in the trigonometry calculator. See Fig. I. 69 \& Fig. I. 70.

Using the trig calculator:
- While in a numeric field (such as the "TO" field for a line), press the INFO soft key, the CALCULATOR soft key, and then press the STANDARD/TRIG soft key. Press the MORE soft key and the soft key row in the picture to the right will appear:
\(>\) Press the MORE soft key to toggle between the three soft key rows.
- Enter a number and then press the soft key for the appropriate trigonometry math function.

For example, to enter a radius that has a value equal to the square root of 2, follow this procedure:
- Highlight the RADIUS field.
\(\Rightarrow\) Press the \(\mathbf{2}\) key.
- Press INFO.
- Press CALCULATOR.
- Press the TRIG soft key.
- Press the SQR ROOT soft key. A value of 1.4142 will appear.


Fig. I. 69 2nd row of calculator soft keys


Fig. I. 70 Trig function soft keys

Whenever you're calculating the SIN, COS or TAN of an angle, enter the angle first and then press the appropriate soft key. If you were to enter a value of 30 into a numeric field, then press the SIN soft key, a value of 0.5 (the SIN of 30 degrees) would appear.

Continuing, let's assume that we are trying to set up a 10 cm SIN bar at a \(30^{\circ}\) angle and need to know how tall the block underneath it should be. If we multiply 0.5000 by 10 , we know that we need to use a 5 cm block.

\section*{016 \\ Angle values use the current angle format selection of 4 decimal degrees, DMS, or radians.}

\section*{RPM calculator}

The RPM calculator is used to set the RPM (or surface cutting speed) based on a specified tool diameter. See Fig. I.71.
> Press the RPM soft key to open the RPM CALCULATOR form.
- The RPM calculator requires a tool diameter. Use the numeric hard keys to enter a diameter value. The diameter value will default to the current tool diameter if no new value is entered. If there is no current tool, the default value is 0 .
- If a surface speed value is required, enter the value using the numeric hard keys. When a surface speed value is entered, the associated RPM value will be calculated.
Surface speed table
- When in the SURFACE SPEED field, a soft key is available for opening on-line help. The table may be consulted for a recommended range of surface speeds for the material being machined.
- Press either the FEET/MIN or METERS/MIN soft key depending on the current units.
- The RPM CALCULATOR form is closed by pressing the USE soft key. There is no return value.

\section*{Reference tables}
- Press the REFERENCE TABLES soft key to open on-line help reference tables.


Fig. I. 71 RPM CALCULATOR form

\section*{Language}

The POSITIP 880 supports multiple languages. To change the language selection:

Press INFO.
- Press the LANGUAGE soft key.
- Press the LANGUAGE soft key until the desired language selection appears on the soft key.
Press USE and confirm your selection. The system will restart.
> ach
> Changing from one language to another will restart the system. This is equivalent to cycling power. It will be necessary to cross over the reference marks to reestablish the current datum settings and reload the current program.

\section*{Inch/MM}

Positions can be displayed and entered in millimeters or inches. If you choose inches, INCH will be displayed on the status bar at the top of the screen.

To change the unit of measure:
- Press INFO.
- Press the INCH/MM soft key.
- The unit of measure can also be set in JOB SETUP. Refer to Job Setup, chapter l-8.

\section*{I-9 POSITIP 880 Turning Functions}

To enter POSITIP 880 for turning functions:

\section*{Power Up}
Switch on the power (located on the back). It will take
approximately \(25-30\) seconds for system to start
after power up. The initial screen will appear (This
screen will only appear the first time you power
up). Select the language by pressing the LANGUGE
soft key. See Fig. I.72.
Select the TURN soft key to continue with turning
functions. You can change the application later in
INSTALLATION SETUP under COUNTER SETTINGS.
If you are a novice user to the POSITIP 880 you
should review the first 4 sections of this manual for
information common to both milling and turning
applications.


Fig. I. 72 Initial screen

Your POSITIP 880 is now ready for operation and is in the operating mode ACTUAL VALUE.

\section*{Fundamentals of Positioning}

Introduction
The geometry of a workpiece is described by a rectangular or Cartesian coordinate system (named in honor of the French mathematician and philosopher René Descartes, in Latin Renatus Cartesius, 1596 to 1650). The Cartesian coordinate system consists of three mutually perpendicular axes \(X, Y\) and \(Z\). The point of intersection of these axes is called the datum (or origin) of the coordinate system. See Fig. I. 73 .


Fig. I. 73 Cartesian coordinate system
To determine positions on a workpiece, the coordinate system is "laid" onto the workpiece. With lathe work (i.e. rotationally symmetrical workpieces), the \(Z\) axis moves along the axis of rotation while the \(X\) axis moves in the direction of the radius or diameter. The \(Y\) axis can be disregarded since it would always have the same values as the \(X\) axis. See Fig. I. 74 .

Fig. I. 74 The Cartesian coordinate with lathe work

\section*{Job Setup for Turning Applications}

Two of the features in this JOB SETUP menu are unique to turning applications (DIAMETER AXES, OVERSIZE). See chapter I-8 Job Setup Menu for descriptions of the other general Job Setup features. See Fig. I. 75.
The JOB SETUP menu is accessed by pressing the INFO soft key, then the JOB SETUP soft key. When in the JOB SETUP menu, the following soft keys will be available:

\section*{INSTALLATION SETUP}

Press to begin accessing the INSTALLATION SETUP parameters.
- IMPORT/EXPORT Press to begin importing or exporting the configuration file.
CANCEL CHANGES Will cancel all changes and exit from JOB SETUP back to the previous mode.
USE NEW SETTINGS Will save any changes to the configuration file before exiting.

\section*{- HELP}

Will open on-line help

\section*{To access the JOB SETUP menu:}
\begin{tabular}{c|c}
\hline INFO & Press the INFO soft key. \\
\hline \begin{tabular}{c|c}
\hline JOB \\
SETUP
\end{tabular} & \begin{tabular}{l} 
Press the JOB SETUP soft key. \\
The cursor will default to the first selection on the \\
menu: TOOL TABLE
\end{tabular} \\
\hline
\end{tabular}

\section*{Tool table (turning only)}

The tool table will support up to 99 tools containing information on each axis. If you have measured your tools using a tool presetter, the offsets may be entered directly. See Fig. I.76.


Fig. I. 75 JOB SETUP screen in turning


Fig. I. 76 Tool table in turning

\section*{Tool Table Usage}

Example: Entering offsets into the tool table
Press the INFO soft key, then the JOB SETUP soft key.
The cursor will default to the TOOL TABLE field.

\section*{ENT Press ENT.}
TOOL TABLE

TOOL DESCRIPTION
25
If a tool presetter is used to measure the length of a tool, enter the tool offset ( 25 mm ) and press ENT.

\section*{ENT}
\(\square\)
USE
Press USE soft key twice, then the USE NEW SETTINGS

\section*{USE}

\section*{USE NEW} SETTINGS
soft key once.

The tool table may be protected to prevent changes from being made to the tool information. Refer to II-2 Installation Setup.

\section*{Diameter axes}

Select DIAMETER AXES to set the axis values to either diameter or radius values depending on the requirements of the drawing. See Fig. I.77.
- Cursor to DIAMETER AXES and press ENT.
- The cursor will be in the \(X\) axis field. (The field will default to RADIUS). Depending on the parameter you need for that axis either press the DIAMETER soft key or press ENT to leave as RADIUS and advance to the next \(Z\) AXIS field.
- Press USE, then USE NEW SETTINGS.


Fig. I. 77 DIAMETER AXES form

\section*{Radius/Diameter Display}

Drawings for lathe parts usually give diameter values. POSITIP 880 can display either the radius or the diameter for you. When the diameter is being displayed, the diameter symbol ( \(\varnothing\) ) is shown next to the position value. See Fig. I.78.

Example: Radius display, position \(1 X=20 \mathrm{~mm}\)
Diameter display, position \(1 X=40^{\circ} \mathrm{mm}\)

\section*{Oversizes}

Oversizes are entered in the JOB SETUP menu. Oversizes are automatically taken into account in the DISTANCE-T0-GO mode. When the displayed distance-to-go is 0 , only the oversize amount remains. When you have set the OVERSIZE field to ON, a symbol for oversize appears on the right side of the axis bar. See Fig. I.79.
Oversize symbol:


Entry sizes for oversize and undersize
Oversize: Positive entry value (up to 999.999 mm ).
Undersize: Negative entry value (down to -999.99mm).

\section*{Entering oversizes}
- Cursor to OVERSIZE and press ENT.
- To enter value either press \(\mathbf{O N}\) soft key or simply begin entering the desired value for that axis. Press ENT to advance to the next axis field.
- To work without oversizes, either press the 0FF soft key for each axis field or enter 0 for each field.
- Press USE, then USE NEW SETTINGS.


Fig. I. 78 Workpiece for radius/diameter display


Fig. I. 79 OVERSIZE form

\section*{Tool Offsetting}

The POSITIP 880 can store the dimensional offsets for up to 99 tools. When you change a workpiece and establish a new datum, all tools are automatically referenced from the new datum.

Before you can use a tool, you must enter its offset (the cutting edge position). Tool offsets can be set using the TOOL/SET or NOTE/SET features or they can be determined using a tool presetter. Refer to the section on Tool Table for more information on entering tool offsets.
The TOOL/SET and NOTE/SET soft keys are available when in the ACTUAL VALUE operating mode. The following outlines the procedures for setting tool offsets using TOOL/SET and NOTE/SET.

\section*{Setting tool offsets using TOOL/SET}

The TOOL/SET operation can be used to set a tool's offset using a tool when the diameter of the workpiece is known.

Example: Entering tool data when the workpiece diameter is known

Touch the known diameter in the X axis.

Select the axis \((X)\) key or press the T00L SET soft key.

10 Enter the position of the tool tip, for example, \(X=10 \mathrm{~mm}\). Press ENT.

Touch the workpiece face with the tool.

Cursor to the \(Z\) axis.

0
Set the position display for the tool tip to zero, \(Z=0\).
Press ENT, then press USE.

POSITIP 880 stores the tool data under the tool number in the tool table. Set the tool data for all other tools as described here.

\section*{NOTE/SET Function}

The NOTE/SET function can be used to set a tool's offset when a tool is under load and the diameter of the workpiece is not known. See Fig. I. 80.

The NOTE/SET function is useful when determining tool data by touching the workpiece. To avoid losing the position value when the tool is retracted to measure the workpiece, this value can be stored by pressing NOTE.
To use the NOTE/SET function:


15 Enter the measured distance or radius, for example, 15 mm and press ENT.
\(\qquad\)

\section*{Datum Setting}

\section*{Example: Setting the workpiece datum (zero point)}

The datum is set to zero for the display of the \(Z\) axis. All tool data entered are automatically referenced to this datum.

Operating mode: ACTUAL VALUE

Machine the workpiece face. Leave the cutting edge of the tool at the face.
\begin{tabular}{|c|c|}
\hline DATUM & Press the DATUM soft key. \\
\hline & Cursor to the Z axis. \\
\hline & Enter a value, for example 0 . Press ENT, then press USE. \\
\hline
\end{tabular}

\section*{Taper Calculator}

Use the taper calculator to calculate the taper angle. See Fig. I.81.
Entry values:
For the taper ratio, calculation requires:
- Radius of the taper
- Length of the taper

From both diameters and the length, calculations of the:
- Starting diameter
- End diameter
- Length of the taper


Fig. I. 81 TAPER CALCULATOR form


\section*{Programming Turning Functions for POSITIP 880}

\section*{Program capabilities}

Operating mode: PROGRAMMING
This section describes the programming capabilities of the POSITIP 880. The operator can load, save or delete a program from internal storage in FILE OPERATIONS. The CLEAR function clears the current program in memory.
\begin{tabular}{lc|}
\hline Function & Soft key \\
\hline Allows access to all programming features. & \begin{tabular}{c} 
PROLRAMMING \\
FEATURES...
\end{tabular} \\
\hline \begin{tabular}{l|c} 
Allows the operator to load, save, delete or \\
clear a program.
\end{tabular} & \begin{tabular}{c} 
FILE \\
OPERATIONS....
\end{tabular} \\
\hline \begin{tabular}{l} 
Allows the operator access to all block \\
functions.
\end{tabular} & \begin{tabular}{c} 
BLOCK \\
FUNCTIONS...
\end{tabular} \\
\hline
\end{tabular}

\section*{Programming Features Soft Keys}

The PROGRAMMING mode has a PROGRAMMING FEATURES soft key which shows all the blocks that can go into a program. Below is a list of PROGRAMMING FEATURES soft keys.

Operating mode: PROGRAMMING
\begin{tabular}{lc|}
\hline Function & Soft key \\
\hline \begin{tabular}{l} 
Opens the TOOL CALL block which is used to \\
select a specific tool number from the tool table \\
at run-time.
\end{tabular} & \begin{tabular}{c} 
TOAL \\
CALL
\end{tabular} \\
\hline \begin{tabular}{l} 
PRESET is used to locate a target position on \\
an axis. The PRESET form allows for entering \\
one or more axis presets. However, multiple \\
axis presets are entered into the program as \\
separate preset blocks.
\end{tabular} & PRESET \\
\hline \begin{tabular}{ll} 
Press to open the MULTIPASS function to turn \\
a shoulder in any number of passes.
\end{tabular} & \\
\hline \begin{tabular}{l} 
Opens the LABEL NUMBER form to mark the \\
beginning and the end of a subprogram
\end{tabular} & \begin{tabular}{c} 
MULTI \\
PASS
\end{tabular} \\
\hline \begin{tabular}{l} 
LABEL
\end{tabular} \\
\hline \begin{tabular}{l} 
LABEL CALL (REPEAT) is used to call a \\
subprogram 1 or more times. It allows the \\
subprogram to be offset a specified amount on \\
each iteration.
\end{tabular} & \begin{tabular}{c} 
LABEL CALL \\
(REPEAT)
\end{tabular} \\
\hline \begin{tabular}{l} 
LABEL CALL (MIRROR) allows blocks within a
\end{tabular} \\
\hline \begin{tabular}{l} 
subprogram to be inverted over an axis to \\
represent a mirror image of that subprogram.
\end{tabular} & \begin{tabular}{c} 
LABEL CALL \\
(MIRROR)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|c|}
\hline Function & Soft key \\
\hline \begin{tabular}{l} 
LINE soft key opens the program form for \\
machining a line.
\end{tabular} & LINE \\
\hline \begin{tabular}{l} 
ARC soft key opens the program form for \\
machining an arc.
\end{tabular} & ARC \\
\hline \begin{tabular}{l} 
BLEND soft key opens the program form and \\
NORMAL ARC, INVERTED ARC and CLOSED
\end{tabular} & BLEND \\
CONTOUR soft keys for performing a blend. & \\
\hline \begin{tabular}{l} 
CHAMFER soft key opens the program form \\
and the CLOSED CONTOUR soft key to create \\
a chamfer.
\end{tabular} & CHAMFER \\
\hline \begin{tabular}{l} 
MORE soft key allows the operator to toggle \\
through the different soft keys rows.
\end{tabular} & \\
\hline
\end{tabular}

\section*{Multipass}

The multipass cycle enables you to turn a shoulder in any number of passes. See Fig. I.83.

Three blocks are needed to enter into a program:
- Cycle block
\(\square\) X coordinate
- Z coordinate

The multipass cycle contains all information required for the operation.
Do not delete any blocks from the cycle.
When the program is operating, POSITIP 880 will display the distance-to-go to the two nominal positions immediately following the cycle block. See Fig. I. 84.

\section*{Example: Turning a shoulder in any number of passes}

Workpiece diameter after machining:
End of shoulder:
\[
\begin{aligned}
& X=10 \mathrm{~mm} \\
& Z=-30 \mathrm{~mm}
\end{aligned}
\]


Fig. I. 83 Example of MULTIPASS

\section*{PROGRAMMING FEATURES.}

Press the PROGRAMMING FEATURES soft key.


Press the MULTIPASS soft key. The program block MULTIPASS appears on the screen.

X AXIS

10
Enter the nominal position the X axis.
X = \(\mathbf{1 0}\)
Press ENT or cursor to the Z axis.
Z AXIS

\section*{30}

Enter the nominal position on the Z axis.
\(Z=-\mathbf{3 0}\)
Press ENT.
Press USE.


Fig. I. 84 Multipass cycle block

\section*{File Operation Soft Keys}
\begin{tabular}{l|c|}
\hline Function & Soft key \\
\hline \begin{tabular}{l} 
Load from internal storage or to current \\
program memory
\end{tabular} & LOAD \\
\hline \begin{tabular}{l} 
Save current program in memory to internal \\
storage
\end{tabular} & SAVE \\
\hline Delete program from internal storage & DELETE \\
\hline Clear current program in memory & CLEAR \\
\hline Select a directory for internal storage & \begin{tabular}{c} 
SELECT \\
DIRECTORY
\end{tabular} \\
\hline Create a name for a new directory & \begin{tabular}{c} 
CREATE \\
DIRECTORY
\end{tabular} \\
\hline Delete a directory from internal storage & \begin{tabular}{c} 
DELETE \\
DIRECTORY
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lc} 
Function & Soft key \\
\hline Allows the operator to transfer a program from \\
an external device into POSITIP 880's program & \begin{tabular}{c} 
IMPORT \\
memory.
\end{tabular} \\
\cline { 2 - 2 } & \\
\hline PROGRAM \\
\hline \begin{tabular}{ll} 
Allows the operator to transfer a program from \\
POSITIP 880 to an external device (PC or \\
printer).
\end{tabular} & \\
\hline
\end{tabular}

CHANGING PROGRAM BLOCKS. (SEE FIG. I.85)
OPERATING MODE: PROGRAMMING
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
CHANGE \\
BLOCKS
\end{tabular} & From within BLOCK FUNCTIONS, press the CHANGE BLOCKS soft key. \\
\hline  & Select the range of blocks you want to change (FIRST and LAST). Press ENT after each selection. \\
\hline \multicolumn{2}{|l|}{\(\checkmark\)} \\
\hline USE & Enter the tool offset, either OUTSIDE or INSIDE. Press USE. \\
\hline
\end{tabular}


Fig. I. 85 Changing a block form
\[
\begin{aligned}
& 4.000 \\
& .5000 \\
& 0000 \\
& 1000
\end{aligned}
\]
\[
411:
\]
46.05 Nm

\({ }^{28} 10 \mathrm{Mm}\)
MH

Technical Information
\[
\begin{aligned}
& \text { BOHAEA SEA } \\
& \text { BOHPEA }
\end{aligned}
\]

\section*{II - 1 Installation and Electrical Connection}

\section*{Items Supplied}
- POSITIP 880 Display Unit
- Tilt/Swivel Mount
- Power connector
- User's Manual

\section*{Mounting Location}

Locate the unit in a well ventilated area such that it may be easily accessed during normal operation.

\section*{Installation}

M4 screws are used to secure POSITIP 880 from below. For the hole locations: see chapter II-8 Dimensions.

\section*{Electrical connection}


There are no serviceable items within this unit. Therefore, the POSITIP 880 should not be opened.
The power cord is the primary means of disconnect. The length of the power cord is not to exceed 3 meters.
Connect a protective ground to the protective conductor terminal on the rear of the unit.

This connection must never be interrupted.


Do not engage or disengage any connections while the unit is under power. Damage to internal components may result.

Use only original replacement fuses.
The equipment shall be connected for its intended purpose, or not connected for any use whatsoever.

\section*{Electrical requirements}
\begin{tabular}{ll} 
Voltage & \(100-240 \mathrm{Vac}\) \\
Power & 35 VA max. \\
Frequency & \(50 / 60 \mathrm{~Hz}(+/-3 \mathrm{~Hz})\)
\end{tabular}

Fuse \(250 \mathrm{~mA} / 250\) Vac, \(5 \mathrm{~mm} \times 20 \mathrm{~mm}\), Slo-Blo (line and neutral fused)

\section*{Environmental}
\begin{tabular}{ll} 
Protection (EN 60529) & IP 40 back panel \\
& IP 54 front panel \\
Operating temperature & \(0^{\circ}\) to \(45^{\circ} \mathrm{C}\left(32^{\circ}\right.\) to \(\left.113^{\circ} \mathrm{F}\right)\) \\
Storage temperature & \(-20^{\circ}\) to \(70^{\circ} \mathrm{C}\left(-22^{\circ}\right.\) to \(\left.158^{\circ} \mathrm{F}\right)\) \\
Mechanical weight & \(3.2 \mathrm{~kg}(7.2 \mathrm{lb})\).
\end{tabular}

\section*{Wiring the power connector (See Fig. II.1)}

Hot leads: \(L\) and \(N\)

No special preventative maintenance is necessary. For cleaning, wipe lightly with a dry lint-free cloth.

It is necessary to connect the protective conductor terminal on the rear panel to the star point of machine ground. Minimum cross-section of the connecting wire: 6
Ground:
Minimum diameter of power connection cable: \(0.75 \mathrm{~mm}^{2}\).

\section*{Protective earthing}

\section*{Preventative maintenance} \(\mathrm{mm}^{2}\), see Fig. II.2.



Fig. II. 1 Wiring the power connector


Fig. II. 2 The protective conductor terminal on the rear panel.

\section*{Connecting the Encoders}

POSITIP 880 can be used with HEIDENHAIN linear and rotary encoders that provide sinusoidal output ( \(11 \mu \mathrm{App}\) or 1 Vpp ) or EnDat (Encoder Data). The encoder inputs on the rear panel are designated X1, X2, X3, X4, X5 and X6. See Fig. II. 3 \& Fig. II.4.
The connecting cable must not exceed 30 m (100 ft.) in length.


Do not engage or disengage any connections while the unit is under power.

\section*{Pin layout for encoder inputs}

Pin layout for POSITIP 880:
D-sub connection 15-pin
\begin{tabular}{|c|c|c|c|}
\hline D-sub connector 15-pin & Inputsignal \(11 \mu \mathrm{~A}_{\text {PP }}\) & Inputsignal 1 VPP & Inputsignal EnDat \\
\hline 1 & \(5 \mathrm{~V} \mathrm{U}_{\mathrm{P}}\) & \(5 \mathrm{~V} \mathrm{U}_{\mathrm{P}}\) & \(5 \mathrm{~V} \mathrm{U}_{\mathrm{P}}\) \\
\hline 2 & \(0 \mathrm{~V} \mathrm{U}_{\mathrm{N}}\) & \(0 \mathrm{~V} \mathrm{U}_{\mathrm{N}}\) & \(0 \mathrm{~V} \mathrm{U}_{\mathrm{N}}\) \\
\hline 3 & \(\mathrm{I}_{1}+\) & A + & A + \\
\hline 4 & \(\mathrm{I}_{1}-\) & A - & A - \\
\hline 5 & & & DATA \\
\hline 6 & \(\mathrm{I}_{2}+\) & B + & B + \\
\hline 7 & \(\mathrm{I}_{2}-\) & B - & B - \\
\hline 8 & & & DATA \\
\hline 9 & & 5 V Sensor & 5 V Sensor \\
\hline 10 & \(\mathrm{I}_{0}+\) & R + & \\
\hline 11 & & 0 V Sensor & 0 V Sensor \\
\hline 12 & \(\mathrm{I}_{0}-\) & R - & \\
\hline 13 & Internal Shield & & Internal Shield \\
\hline 14 & & & CLOCK \\
\hline 15 & & & CLOCK \\
\hline Case & External Shield & & \\
\hline
\end{tabular}


Fig. II. 315 pin header X1-X6 plug pinout for encoder signal input.

The operator can setup any encoder input to go to any axis.
Default configuration:
\begin{tabular}{lll} 
Encoder input & Mill & Turn \\
\hline X1 & X & X \\
\hline X2 & Y & Z \\
\hline X3 & Z & Xo \\
\hline X4 & W & Zo \\
\hline X5 & U & A \\
\hline X6 & V & Ao \\
\hline
\end{tabular}

\section*{Connecting an Edge Finder}

Connect the HEIDENHAIN Edge Finder to the D-sub input X10 on the rear panel.

Adapt POSITIP 880 for use with the Edge Finder through the following operating parameters:
- Stylus length
- Stylus diameter

Description of operating parameters see Job Setup chapter.


Pin layout for Edge Finder input (See Fig. II. 5 for pinout)
\begin{tabular}{lll} 
Pin & Assignment & Type \\
\hline 1 & Internal shield & \\
\hline 2 & Stand-by & KT 130 \\
\hline 6 & UP +5 V & KT 130 \\
\hline 8 & UP 0V & KT 130 \\
\hline 13 & Switch signal & KT 130 \\
\hline Housing & External shield & \\
\hline
\end{tabular}

All other pins: not assigned


Fig. II. 4 Encoder inputs on rear panel.


Fig. II. \(5 \quad 15\) pin receptacle connector for Edge Finder

\section*{II - 2 Installation Setup}

\section*{Initial switch-on}

When you switch on power to your POSITIP 880 for the first time, the screen shown in Fig. II. 6 appears. You can now select the appropriate language and the type of application (milling or turning).

Press LANGUAGE to scroll through the user interface languages.
For milling:
- Press the MILL soft key.

For turning:
> Press the TURN soft key.
POSITIP 880 automatically provides the functions appropriate to the selected application.
You can change the application later in INSTALLATION SETUP under COUNTER SETTINGS.

This section contains installation setup parameters. Installation setup is accessed by pressing the INFO soft key, which brings up INSTALLATION SETUP soft key. See Fig. II.7: Installation setup screen

\section*{Enter the passcode}

Press the INSTALLATION SETUP soft key to access the form that requires a passcode to be entered. The CANCEL and USE soft keys are also available.

Enter the correct passcode (95148) and press the USE soft key or ENT hard key. (Once you enter the passcode, it will not have to be entered again until you cycle power.) This will open a form containing a list of the INSTALLATION SETUP parameters and the following soft keys:
\begin{tabular}{ll|}
\hline Function & Soft key \\
\hline \begin{tabular}{l} 
Press to begin accessing the JOB SETUP \\
parameter.
\end{tabular} & \begin{tabular}{c} 
JOB \\
SETUP
\end{tabular} \\
\hline \begin{tabular}{l} 
Import or Export configuration file over the \\
serial port.
\end{tabular} & LOAD \\
\hline \begin{tabular}{l} 
This will cancel all changes and exit from \\
INSTALLATION SETUP back to previous mode.
\end{tabular} & CANCEL \\
\hline \begin{tabular}{l} 
This will update with new settings and save any \\
changes to the configuration file before it exits.
\end{tabular} & SAVE \\
\hline This will open on-screen help. & HELP \\
\hline
\end{tabular}


Fig. II. 6 POSITIP 880 screen after initial switch-on


Fig. II. 7 Installation setup screen

\section*{General field/form navigation guide}
- Press Up/Down arrow keys to move between fields.
- Use keypad to enter numeric values within each field.
- Press ENT to confirm the entry within a field.
- Press USE when form is completed and save settings to the form.
\(\square\) Press USE NEW SETTINGS to return to the INFO screen.

\section*{Axes Configuration}

The configuration parameter allows encoder inputs (X1-X6) to be assigned to displayable axes. The axis may consist of a single encoder input or may be a combination of two encoders (2nd encoder position added or subtracted from the 1st). See Fig. II. 8 \& Fig. II.9.

This is also where the labels for the axes may be changed (A-Z).
To set up the configuration of each axes:
- Cursor to AXES CONFIGURATION in the INSTALLATION SETUP menu and press ENT.
- The AXES CONFIGURATION form is displayed.
- Use the numeric keys 1-6 to select the corresponding encoder input for the axis.
- Press the CE key to remove the encoder input and OFF will be displayed. Which ever encoders are not being used should be switched to the OFF position at this point.
- Two encoder inputs can be coupled to an axis by using the numeric keys and the " + " and " - " soft keys.
- Press the SELECT LABEL soft key to bring up the SELECT LABEL character chooser form and the LEFT, RIGHT, SELECT CHARACTER, CANCEL and USE soft keys are available.
- Use the LEFT and RIGHT soft keys and the Up and Down arrow keys to highlight the desired character.
- Press the SELECT CHARACTER soft key or ENT hard key to select the character as the axis label and remove the SELECT LABEL form. The soft keys will return to the previous soft key menu.
- When you have finished entering values, press the USE soft key or the ENT hard key to save the changes for that parameter and return to the INSTALLATION SETUP menu.
- Graph axes functions are for turning functions only. The default setting for graph axes is to display the \(Z\) axis coordinates along the horizontal axis of the part graphic and the \(X\) axis coordinates along the vertical axis. If your configuration differs from this, press the HORIZONTAL or VERTICAL soft keys to select the appropriate axes.


Fig. II. 8 AXES CONFIGURATION form (turning)


Fig. II. 9 AXES CONFIGURATION form (milling)

\section*{Encoder Setup}

The ENCODER SETUP is used to set the encoder resolution and type (linear, angular), count direction, reference mark type. See Fig. II.10.
- Cursor to the ENCODER SETUP to open a list of 6 possible encoders.
- Cursor to the encoder you want to change and press ENT.
> The ENCODER SIGNAL field will already be determined.
- Cursor will be in the SIGNAL PERIOD field, select the encoder type by pressing the ENCODER TYPE soft key. The default linear encoder signal period is \(20 \mu \mathrm{~m}\).
- For linear encoders, use COARSER or FINER soft keys to select the encoder's signal period in \(\mu \mathrm{m}(2,4,10,20,40,100,200,10240,12\) 800) or type in the exact signal period desired. For rotary encoders, enter the encoder's line count. The default encoder type is linear. Refer to II-3 for values.
- In the RESOLUTION field, select the COARSER or FINER resolution value. Default linear resolution is \(1 \mu \mathrm{~m}\).
\(\Rightarrow\) In the REFERENCE MARK field, select whether the encoder has no reference mark with the NONE soft key, a single reference mark with the SINGLE soft key or a distance-coded reference mark with the CODED soft key.
- For coded reference marks, press the CODED soft key to select 500, 1000, 2000 or 5000 . The default value is CODED with a spacing of 1000. Refer to II-3 for values.
- In the DIRECTION field, select the count direction by pressing the POSITIVE or NEGATIVE soft key. If the encoder's count direction matches the user's count direction, select positive. If the directions do not match, select negative. The default count direction is POSITIVE.
- In the ERROR MONITOR field, select whether signal and slew errors should be monitored by selecting ON or OFF. The default is ON. When an error message occurs, press the CE (Clear Entry) key to remove.
- For rotary encoders, an ANGLE DISPLAY field will be available. Select how the angle will be displayed by choosing between three separate soft keys to toggle through the available options. Choose between \(\mathbf{0}^{\circ}\) TO \(\mathbf{3 6 0 ^ { \circ }}, \mathbf{- 1 8 0 ^ { \circ }}\) TO \(\mathbf{+ 1 8 0 ^ { \circ }}\), or - INF \(^{\circ}\) TO INF \(^{\circ}\). The default is \(0^{\circ} \mathrm{TO} 360^{\circ}\).
- When complete, select USE, then cursor to the next encoder input field if necessary.


Fig. II. 10 ENCODER SETUP form

\section*{Error Compensation}

The distance a cutting tool travels, measured by an encoder, can in certain cases, differ from the actual tool travel. This error can occur due to ball screw pitch error or deflection and tilting of axes. This error can either be linear or non-linear. You can determine these errors with a reference measurement system, e.g. the VM 101 from HEIDENHAIN or with gauge blocks. From an analysis of the error it can be determined which form of compensation is required, linear or nonlinear error.

The POSITIP 880 provides the opportunity to compensate for these errors and each axis can be programmed separately with the appropriate compensation.
Error compensation is only available when using linear
encoders.

\section*{Linear Error Compensation}

Linear error compensation can be applied, if the results of the comparison with a reference standard show a linear deviation over the whole measuring length. In this case the error can be compensated by the calculation of a single correction factor. See Fig. II. 11 Fig. II. 12

To calculate the linear error compensation use this formula:

Correction factor LEC \(=\left(\frac{\mathrm{S}-\mathrm{M}}{\mathrm{M}}\right) \times 10^{6} \mathrm{ppm}\)
with \(\quad S=\) measured length with reference standard
\(M=\) measured length with device at axis
Example
If the length of the standard you used is 500 mm and the measured length along the X -axis is 499.95, then the LEC for the X -axis is 500 parts per million (ppm).
\[
\operatorname{LEC}=\left(\frac{500-499.95}{499.95}\right) \times 10^{6} \mathrm{ppm}
\]

LEC = 500 ppm
(rounded to the nearest whole number)

Fig. II. 11 Linear error comp., calculation formula


Fig. II. 12 Linear error compensation form

\section*{Non-Linear Error Compensation}

Non-linear error compensation should be applied, if the results of the comparison with a reference standard show an alternating or oscillating deviation. The required correction values are calculated and entered in a table. POSITIP 880 supports up to 128 points per axis. The error value between two entered adjacent correction points is calculated with linear interpolation.

> Non-linear error compensation is only available on scales with reference marks. If non-linear error compensation has been defined, no error compensation will be applied until the reference marks have been crossed.
- Select NON-LINEAR and press EDIT TABLE.
- The encoder's error compensation table and a graph showing the error are displayed in the left two-thirds of the display screen.
- The error compensation table shows the table entry, the scale's measured value, and the amount of error at the measured value.

\section*{Reading the graph}
- The graph shows a plot of a translation error (reference - measured) vs. measured value. The graph has a fixed scale. As the cursor is moved through the form, the location of the point on the graph is indicated with a blue vertical line. See Fig. II. 13.

\section*{Starting a Non-linear Error Compensation Table}
- To start a new error compensation table, first press the CLEAR TABLE soft key. This key will only be present if a table containing data already exists.
- The error compensation measured values are relative to the table datum location. When the error compensation table is cleared, the POSITIP 880 resets the table datum to the location, of the scale's reference point.
- The table datum may be set to another location. Move to the location from which the table values to be measured and press the SET TABLE DATUM soft key. The table datum must be set before adding entries to the table.

\section*{Configuring the Compensation Table}
- Error compensation information is added to the table by pressing the ADD NEW POINT soft key.
- There are two possible ways to enter information to the table; Direct Entry or Auto Calculation.

\section*{Direct Entry}
- If known, the encoder's error information may be entered directly. Press the DIRECT ENTRY soft key. An ERROR INTERVAL form will open beside the compensation table.
- Enter both the measured value and the error at that value in the form and press the USE soft key.
- The table and plotted graph will be updated. Pressing the CANCEL soft key will close the ERROR INTERVAL form without changing the information in the compensation table.


Fig. II. 13 Non-linear error compensation form

\section*{Autocalculation}
- This option allows the operator to use gauge blocks to determine the compensation factor.
> Press the AUTOCALCULATION soft key. The ERROR INTERVAL form will open. Move the table to the first edge of the gauge block, and press the START soft key. The MEASURED field will reset to 0 .
- Move to the second edge of the gauge block. As the table is moved, the Measured field will show the scale's displacement from the first edge.
- Press the END soft key.
- Enter the known gauge block size in the REFERENCE field. If the block edges were approached from opposite directions, include the diameter of the tool or feeler gauge stylus in the REFERENCE VALUE field.

After entering the value, press the USE soft key to close the form. The system will calculate the compensation factor.

\section*{Importing/Exporting Tables}

Error compensation table information for each axis can be imported or exported over the serial port. The tables may also be exported to a printer over the parallel port.
- Press the IMPORT TABLE soft key to download a compensation table from a PC. This soft key will only be available if the table is empty. If not empty, press CLEAR TABLE soft key first.
- Press the EXPORT TABLE soft key to upload the current compensation table to a PC. It is only available if the table is not empty.
> To exit, error compensation table configuration, press the USE soft key. The screen will go back to the ERROR COMPENSATION form.

\section*{Serial Port (X31)}

A printer or computer may be connected to the serial port. Part programs and configuration files may be sent to a printer or computer. Remote commands, remote key codes, part programs and configuration files may be received from a computer. See Fig. II.14.
- The BAUD field can be set to 300, 600, 1 200, 2 400, 9 600, 19200 3840057600 or 115200 by using the LOWER and HIGHER soft keys. The default value is 9600 .
DATA BITS field can be set to 7 or 8 using the soft keys provided. The default is 8 .
- The parity can be set to NONE, EVEN, or ODD using the soft keys provided. The default is NONE.
\(\Rightarrow\) The STOP BITS field can be set to 1 or 2 using soft keys. The Default is 1 .
Output tail is the number of carriage returns that will be sent at the end of the transmission. The output tail is initially 0 and can be set to a positive integer value ( \(0-9\) ) by using the numeric hard keys.

The serial port settings will be retained on a power cycle. There is no parameter to enable or disable the serial port. A file will only be sent to the serial port if the external device is ready.

Refer to Data Interface section for cable connection and pin assignments.

\section*{Parallel Port (X32)}

A printer may be connected to the parallel port. See Fig. II.15.
\(\Rightarrow\) The output tail is initially \(\mathbf{0}\) and can be set to a positive integer value by using the numeric keys (0-9).
> The LF AFTER CR field can be set to ON or OFF using the soft keys. The default is OFF.

The parallel port settings will be retained on a power cycle. There is no parameter to enable or disable the parallel port. A file will only be sent to the parallel port if the external device is ready. If the external device is not ready an error message will appear.


Fig. II. 14 SERIAL PORT form


Fig. II. 15 PARALLEL PORT form

\section*{Protection}

The protection feature lets you prevent changes to part programs, the tool table and datum 0. See Fig. II. 16.

Two soft keys are available \(\mathbf{O N}\) and \(\mathbf{0 F F}\). The default is OFF. To protect a feature use the \(\mathbf{O N}\) soft key.
When the program protection is set to \(\mathbf{O N}\), part programs cannot be changed or saved.

Setting the tool table to ON prevents it from being changed.
Setting the datum \(\mathbf{0}\) to \(\mathbf{O N}\) prevents datum 0 from being changed.
The protection settings will be retained on a power cycle.

\section*{Counter Settings}

The COUNTER SETTINGS feature is the parameter where the operator defines the user application for the readout. The choices are for milling or turning applications. See Fig. II.17.

A FACTORY DEFAULT soft key appears in the COUNTER SETTINGS choice of options. The operator will be prompted to press YES to set parameters to factory default settings or \(\mathbf{N O}\) to cancel and return to previous menu screen.


Fig. II. 17 COUNTER SETTINGS form

\section*{Diagnostics}

The DIAGNOSTICS menu provides access for testing keypad, LCD display, encoders and power supply. See Fig. II.18.

\section*{Keypad test}

An image of the keypad (w/ edge finder) provides indication when a switch is pressed and released.

P Press each hard and soft key to test. A dot will appear on each key when it has been pressed indicating that it is operating properly.
- Press the CE hard key twice to exit the keypad test.

\section*{Display test}

Display tests consist of the LCD sleep test and a color test.
- Press the SLEEP TEST soft key. The screen will go blank, simulating the sleep mode.
- To bring the screen back and end the test, press any key.
- Press the COLOR TEST soft key 6 times to review the complete cycle of colors available.
Press the EXIT TEST soft key to leave the display test mode.

\section*{Voltage monitor}

This allows the operator to monitor the output voltage to encoders. There are no operator controls within this view. This parameter is for the purpose of observation only. When monitoring is completed, press

\section*{EXIT TEST}

\section*{Encoder signal plot}

This parameter allows the operator to plot the signal of each encoder. See Fig. II. 19.
- Select which encoder you want to observe.
- Cursor to the desired input and press ENT.
\(\Rightarrow\) As the encoder is moved you will see the signals of the A \& B channels.
Press EXIT TEST to exit this mode.

\section*{System statistics}

System statistics displays the amount of time both the display and the system have been on.

It also shows the total distance traveled for each encoder.
Press EXIT TEST to exit the System Statistics mode.


Fig. II. 18 DIAGNOSTICS form


Fig. II. 19 Example of a signal plot

\section*{AMI (Auxiliary Machine Interface)(X51) (Optional)}

If AMI hardware is connected to the POSITIP 880, the SWITCHING OUTPUTS form will be available from the installation setup list box. The AMI hardware may be configured with 8 output relays. See Fig. II. 20.

To configure an individual relay output, move the cursor to the relay number and press ENT. To remove a relay's setting, highlight the relay and press CE.
- The AXIS field is used to specify which axis position controls the relay. The axis is selected by pressing the NEXT AXIS soft key.
The DIRECTIONAL soft key is used to select the directional signal mode. When selected, the relay's operation is based on the position value's sign. The relay is activated when the value is non-negative.
The relay is de-activated when the value is negative. If DIRECTIONAL is selected, the axis selection may be set to ALL AXES. In this configuration, the relay's output is set when an operation sets any of the distance-to-go mode display values.
- The CONDITION field is used to specify the required relationship between the current position display and the switching point. It is set by pressing the soft keys.
- The PRESET field is used to define the switching points and to select whether the point is an actual value or distance-to-go position. The position source is selected by pressing one of the soft keys.
- The POINT/RANGE field is used to define whether the condition refers to a point on the axis or refers to range about zero. If a range is specified, the sign of the value is ignored.
- To fill in the RELAY ON/OFF field press the OFF or ON soft keys. When the condition has been satisfied the relay will turn OFF or ON.
- The RELAY OPERATION field is used to further define how the relay will operate when the switching condition is met. The options include CONTINUOUS, PULSED or SINGLE. SINGLE is only an option when the distance-to-go position is selected in the PRESET field.

In CONTINUOUS mode, the relay remains activated (ON or OFF) as long as the switching condition is met.
In PULSED mode, the relay is activated only for a predefined, period of time. After the period has timed out, the relay is de-activated. The time is entered in the RELAY OPERATION field.

If the PULSED soft key was pressed, a delay value must be entered using the numeric keypad.
In the SINGLE mode, the relay will transition to the activated state only one time after the axis value is set. It only applies to distance-to-go mode position values.
The AMI settings are retained on a power cycle.


Fig. II. 20 AMI form

\section*{Remote Console (X61) (Optional)}

The remote console functions as duplicate POSITIP 880. The same images display upon both consoles and either keypad may be used for any function. The POSITIP 880's remote console is interfaced via X61. The remote console is equipped with an interface cable that connects to the POSITIP 880's remote console connection (X61).


Fig. II. 21 Back view of remote console


\section*{Setting the display step with rotary encoders}

With rotary encoders, the display step depends on the
- line count of the encoder and the
- angle display step

Both parameters are entered separately for each rotary axis.

\section*{Example settings for HEIDENHAIN rotary encoders}
\begin{tabular}{l|l|l} 
Encoder & Line count & Reference marks \\
\hline ROD 250, RON 255 & \(9000 / 18000\) & 1 \\
\hline ROD 250C, RON 255C & 9000 & 500 \\
\hline \begin{tabular}{l} 
ROD 250C, ROD 255C \\
ROD 700C, RON 705C \\
RON 706C
\end{tabular} & 18000 & 1000 \\
\hline ROD 700C, ROD 800C & 36000 & 1000
\end{tabular}
The POSITIP 880's data interface includes the RS-232 serial port (X31) and parallel port (X32). The serial port supports bi-directional data communications which allows data to be exported to or imported from an external device. The parallel port only allows data to be exported to an external device.
Data which can be exported from the POSITIP 880 to an external serial or parallel device includes:
- User part programs
- Job and installation configuration parameters
- Non-linear error compensation tables
\(\square\) Measured value output (display values or probing functions)
Data which can be imported into POSITIP 880 from an external device includes:
- User part programs
- Job and installation configuration parameters
- Non-linear error compensation tables
This chapter covers what you need to know about setting up the data interface:
- Pin layout of data interface
- Signal level
\(\square\) Wiring of the connecting cable and connectors
- Baud rate (data transfer speed)
- Data format

\section*{Serial port}

The RS-232-C/N. 24 serial port is located on the rear panel (see Fig. 11.22 for pin layout). The following devices can be connected to this port:
- Printer with serial data interface
- Personal computer with serial data interface

For operations that support data transfer, import and export soft keys will be available. Refer to the operation section of the manual for more information.

To export data to a serial port printer, press the EXPORT soft key. The data is exported in an ASCII text format which can be printed directly.
To export or import data between the POSITIP 880 and a personal computer, the PC must use terminal communications software such as Microsoft's Hyperterminal. This software processes the data being sent or received over the serial cable link. All data transferred between POSITIP 880 and the PC is in ASCII text format.

To export data from the POSITIP 880 to a PC, the PC must first be made ready to receive the data to save it to a file. Setup the terminal communication program to capture ASCII text data from the COM port to a file on the PC. After the PC is ready to receive, start the data transfer by pressing the POSITIP 880's EXPORT soft key.

To import data into the POSITIP 880 from a PC, the POSITIP 880 must first be made ready to receive the data. Press the POSITIP 880's IMPORT soft key. After the POSITIP 880 is ready, setup the terminal communications program on the PC to send the desired file in ASCII text format.

\footnotetext{
abs
The POSITIP 880 does not support communication protocols such as Kermit or Xmodem.
}

\section*{Wiring the connecting cable}

The wiring of the connecting cable depends on the device being connected (see technical documentation for external device).

\section*{Full wiring}

Before the POSITIP 880 and your PC can communicate, they need to be connected to each other with a serial cable. See Fig. II. 23 \& Fig. II. 24 .


Fig. II. 23 Pin connection for serial port with handshaking


Fig. II. 24 Pin connection for Serial Port without handshaking

Signal
\begin{tabular}{lll} 
Signal & \begin{tabular}{l} 
Signal level \\
"1" \(=\) "active"
\end{tabular} & \begin{tabular}{l} 
Signal level \\
"0" \(=\) "inactive"
\end{tabular} \\
\hline TXD, RXD & -3 V to -15 V & +3 V to +15 V \\
\hline RTS, CTS & +3 V to +15 V & -3 V to -15 V \\
DSR, DTR & & \\
\hline
\end{tabular}

\section*{Parallel port}

The parallel port is located on the rear panel (see Fig. II. 25 \& Fig. II.26). The following devices can be connected to this port:
- Printer with "Centronics" parallel data interface.

For operations that support data transfer, import and export soft keys will be available. Refer to the operation section of the manual for more information.

To export data to a parallel port printer, press the EXPORT soft key. The data is exported in an ASCII text format which can be printed directly.


Fig. II. 25 Pin connection for parallel port


Fig. II. 2625 Pin receptacle X32
put

\section*{II - 5 Measured Value Output}

\section*{Examples of character output at the data interface}
If you have a PC you can retrieve values from POSITIP 880. For activation, see Measured Value Output under Job Setup. In all three examples, measured value output is started with Ctrl B (sent over serial interface) or a switching signal at the EXT input (within optional Auxiliary Machine Interface). Ctrl B will transmit the currently displayed values in either DRO 1 or DRO2, whichever is currently visible.
Data output using external signals
Example 1: Linear axis with radius display \(X=\boldsymbol{+ 4 1 . 2 9} \mathbf{~ m m}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline\(X\) & \(=\) & + & 41 &. & 29 & & \(R\) & <CR> & <LF> \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}
1 Coordinate axis
2 Equal sign
\(3+/-\) sign
42 to 7 places after the decimal point
5 Decimal point
61 to 6 places after the decimal point
7 Unit: blank space for mm, " for inches
8 Actual value display:
\(\mathbf{R}\) for radius, \(\mathbf{D}\) for diameter
Distance-to-go display:
\(\mathbf{r}\) for radius, \(\mathbf{d}\) for diameter
9 Carriage return
10 Blank line (Line Feed)

Example 2: Rotary axis with degrees decimal display \(\mathbf{C}=\) \(+1260.0000^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline C & \(=\) & + & 1260 & . & 0000 & & W & <CR> & <LF> \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}

1 Coordinate axis
2 Equal sign
\(3+/-\) sign
44 to 8 places after the decimal point
5 Decimal point
60 to 4 places after the decimal point
7 Blank space
\(8 \mathbf{W}\) for angle (in distance-to-go display: w)

10 Blank line (Line Feed)

\section*{Example 3: Rotary axis with degrees/minutes/seconds display} C=+360²3' 45"'
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C & \(=\) & + & 360 & \(:\) & 23 & \(:\) & 45 & & \(W\) & <CR> & <LF> \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

1 Coordinate axis
2 Equal sign
\(3+/-\) sign
43 to 8 places degrees
5 Colon
60 to 2 places minutes
7 Colon
80 to 2 places seconds
9 Blank space
10 W for angle (in distance-to-go display: w)
11 Carriage return
12 Blank line (Line Feed)

\section*{Data output using Edge Finder}

In the next three examples, measured value output is started with a switching signal from the edge finder. Printing capability can be turned on or off in the Job Setup parameter Measured Value Output. Information from here is transmitted from the selected axis.
Example 4: Probing function Edge \(\mathbf{Y}=\mathbf{- 3 6 7 4 . 4 4 9 8} \mathbf{m m}\)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline Y & & \(:\) & - & 3674 &. & 4498 & & \(R\) & <CR> & <LF> \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\end{tabular}
1 Coordinate axis
22 blank spaces
3 Colon
\(4+/-\) sign or blank space
52 to 7 places before the decimal point
6 Decimal point
71 to 6 places after the decimal point
8 Unit: blank space for mm," for inches
\(9 \mathbf{R}\) for radius display, \(\mathbf{D}\) for diameter display
10 Carriage return
11 Blank line (Line Feed)

\section*{Example 5: Probing function Centerline}
Coordinate of centerline on \(X\) axis \(C L X=+3476.9963 \mathrm{~mm}\) (Center Line \(\mathbf{X}\) axis)
Distance between the probed edges DST \(=2853.0012 \mathrm{~mm}\) (Distance)
\begin{tabular}{|c|c|c|ccc|c|cccc|c|c|c|}
\hline CLX & \(:\) & + & 3 & 4 & 7 & 6 &. & 9 & 9 & 6 & 3 & & \(R\) \\
<CR \(>\) & <LF> \\
\hline DST & \(:\) & & 2 & 8 & 5 & 3 &. & 0 & 0 & 1 & 2 & & \(R\) \\
\hline & 1 & 2 & 3 & 4 & & 5 & 6 & 7 & 8 & <LF> \\
\hline
\end{tabular}

\section*{1 Colon}
\(2+/-\) sign or blank space
32 to 7 places before the decimal point
4 Decimal point
51 to 6 places after the decimal point
6 Unit: blank space for mm , " for inches
7 R for radius display, D for diameter display
8 Carriage return
9 Blank line (Line Feed)

\section*{Example 6: Probing function Circle Center}

First center point coordinate, e.g. CCX \(=-1616.3429 \mathrm{~mm}\), Second center point coordinate, e.g. CCY \(=+4362.9876 \mathrm{~mm}\), (Circle Center \(\mathbf{X}\) axis, Circle Center \(\mathbf{Y}\) axis; coordinates depend on working plane)
Circle diameter DIA \(=1250.0500 \mathrm{~mm}\)
\begin{tabular}{|c|c|c|cccc|c|cccc|c|c|c|c|}
\hline CCX & \(:\) & - & 1 & 6 & 1 & 6 &. & 3 & 4 & 2 & 9 & & \(R\) & <CR> & <LF> \\
\hline CCY & \(:\) & + & 4 & 3 & 6 & 2 &. & 9 & 8 & 7 & 6 & & \(R\) & <CR> & <LF> \\
\hline DIA & \(:\) & & 1 & 2 & 5 & 0 &. & 0 & 5 & 0 & 0 & & \(R\) & <CR> & <LF> \\
\hline & 1 & 2 & & 3 & & 4 & & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{tabular}

\section*{1 Colon}

2 +/- sign or blank space
32 to 7 places before the decimal point

51 to 6 places after the decimal point
6 Unit: blank space for mm , " for inches
7 R for radius display, D for diameter display
8 Carriage return
9 Blank line (Line Feed)
\begin{tabular}{|c|c|}
\hline POSITIP 880 Data & \\
\hline Axes & Up to 6 axes from A - Z \\
\hline Encoder inputs & \begin{tabular}{l}
\(6 x\) » \(\quad 11 \mu A_{\text {Pp, }} 1 V_{\text {Pp }}\) or EnDat (switchable); input frequency max. 100 kHz for incremental or absolute HEIDENHAIN encoders \\
Signal period: \\
\(0.128 \mu \mathrm{~m}, 2 \mu \mathrm{~m}, 4 \mu \mathrm{~m}, 10 \mu \mathrm{~m}, 20 \mu \mathrm{~m}, 40 \mu \mathrm{~m}, 100 \mu \mathrm{~m}, 10240 \mu \mathrm{~m}\) \\
Line count: \\
9000/18000/36000
\end{tabular} \\
\hline Subdivision factor & Max. 1024-fold \\
\hline Display step & \begin{tabular}{l}
Linear axes: 1 mm to \(0.005 \mu \mathrm{~m}\) \\
Rotary axes: \(1^{\circ}\) to \(0.0001^{\circ}\left(00^{\circ} 00^{\prime} 01^{\prime \prime}\right)\)
\end{tabular} \\
\hline Display & \begin{tabular}{l}
Color flat-panel display for position values, dialog and input display, graphic functions, graphic positioning aid \\
Dialog languages: \\
German, English \\
Status display: \\
Operating mode, REF, inches, scaling factor, feed rate \\
Datum number \\
Tool number and tool axis \\
Tool compensation R-, R+, R0
\end{tabular} \\
\hline Functions & \begin{tabular}{l}
REF reference-mark evaluation for distance-coded or single reference marks \\
- Distance-to-go mode, nominal position input (absolute or incremental) \\
- Contour monitoring with magnify function \\
- Scaling factor \\
- HELP: On-screen operating instructions \\
- INFO: Calculator, cutting data calculator, user and operating parameters
99 datum points and 99 tools \\
\(\square\) Probing functions for datum acquisition, preferably with the KT Edge Finder: \\
Edge, Center Line and Circle Center \\
- Tool radius compensation \\
- Calculation of positions for bolt hole circles and linear hole patterns \\
- Positioning aids for milling and the roughing out of rectangle pockets
\end{tabular} \\
\hline Programming & \begin{tabular}{l}
Up to 999 program blocks in each program; sub programming capability; teachin programming \\
Cycles: \\
Lines, arcs, chamfers, circle patterns, linear patterns and rectangle pockets
\end{tabular} \\
\hline Error compensation & Linear and non-linear, up to 128 measuring points \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{POSITIP 880 Data} \\
\hline Data interface & \begin{tabular}{l}
Serial: \\
RS-232-C/V. 24300 to 115200 baud \\
For output of programs, measured values and parameters; \\
For input of programs and parameters \\
Parallel: \\
Centronics for output of measured values
\end{tabular} \\
\hline Switching inputs/outputs & Upon request (via separate AMI input/output unit) \\
\hline Accessories & Tilting base
Remote console
KT 130 Edge Finder \\
\hline Main power input & 100 V to \(240 \mathrm{~V}(-15 \%\) to \(+10 \%) 50 \mathrm{~Hz}\) to \(60 \mathrm{~Hz}( \pm 2 \mathrm{~Hz})\); power consumption 35 W \\
\hline Operating temperature & \(0^{\circ} \mathrm{C}\) to \(45^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.\) to \(\left.113{ }^{\circ} \mathrm{F}\right)\) \\
\hline Degree of protection (EN 60529) & IP 40 (IP 54 front panel) \\
\hline Weight & 3.2 kg \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{POSITIP 880 Data} \\
\hline Axes & Up to 6 axes from \(A\) to \(Z, Z_{0}, Z_{S}\) \\
\hline \multirow[t]{3}{*}{Encoder inputs} & \(6 x\) » \(\quad 11 \mu A_{\text {Pp, }} 1 V_{\text {Pp }}\) or EnDat (switchable); input frequency max. 100 kHz for incremental or absolute HEIDENHAIN encoders \\
\hline & \begin{tabular}{l}
Signal period: \\
\(0.128 \mu \mathrm{~m}, 2 \mu \mathrm{~m}, 4 \mu \mathrm{~m}, 10 \mu \mathrm{~m}, 20 \mu \mathrm{~m}, 40 \mu \mathrm{~m}, 100 \mu \mathrm{~m}, 10240 \mu \mathrm{~m}\)
\end{tabular} \\
\hline & \[
\begin{aligned}
& \text { Line count: } \\
& 9000 / 18000 / 36000
\end{aligned}
\] \\
\hline Subdivision factor & Max. 1024-fold \\
\hline Display step & \begin{tabular}{l}
Linear axes: 1 mm to \(0.005 \mu \mathrm{~m}\) \\
Rotary axes: \(1^{\circ}\) to \(0.0001^{\circ}\left(00^{\circ} 00^{\prime} 01^{\prime \prime}\right)\)
\end{tabular} \\
\hline \multirow[t]{3}{*}{Display} & Color flat-panel display for position values, dialog and input display, graphic functions, graphic positioning aid \\
\hline & \begin{tabular}{l}
Dialog languages: \\
German, English
\end{tabular} \\
\hline & \begin{tabular}{l}
Status display: \\
Tool number Diameter display Ø Sum display
\end{tabular} \\
\hline \multirow[t]{9}{*}{Functions} & REF reference-mark evaluation for distance-coded or single reference marks \\
\hline & Distance-to-go mode, nominal position input (absolute or incremental) \\
\hline & Contour monitoring with magnify function \\
\hline & \(\square\) Scaling factor \\
\hline & - HELP: On-screen operating instructions \\
\hline & \(\square\) INFO: Calculator, taper calculator, user and operating parameters \\
\hline & - 1 datum point, 99 tools \\
\hline & \(\square\) Freezing tool position for back-off \\
\hline & \(\square\) Oversize allowance \\
\hline \multirow[t]{2}{*}{Programming} & Up to 999 program blocks in each program; sub programming capability; teachin programming \\
\hline & \begin{tabular}{l}
Cycles: \\
Lines, arcs, chamfers, multipass turning, blend
\end{tabular} \\
\hline Error Compensation & Linear and non-linear, up to 128 measuring points \\
\hline \multirow[t]{2}{*}{Data interface} & \begin{tabular}{l}
Serial: \\
RS-232-C/V. 24300 to 115200 baud \\
For output of programs, measured values and parameters; For input of programs and parameters
\end{tabular} \\
\hline & \begin{tabular}{l}
Parallel: \\
Centronics for output of measured values
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
POSITIP 880 Data & \\
\hline Switching inputs/outputs & Upon request (via separate AMI input/output unit) \\
\hline Accessories & \begin{tabular}{l} 
Tilting base \\
\\
\\
Memote console
\end{tabular} \\
\hline Main power input & 100 V to \(240 \mathrm{~V}(-15 \%\) to \(+10 \%) 50 \mathrm{~Hz}\) to \(60 \mathrm{~Hz}( \pm 2 \mathrm{~Hz}) ;\) power consumption 35 W \\
\hline Operating temperature & \(0^{\circ} \mathrm{C}\) to \(45^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.\) to \(\left.113^{\circ} \mathrm{F}\right)\) \\
\hline Degree of protection (EN 60529) & \(\mathrm{IP} 40(\mathrm{IP} 54\) front panel) \\
\hline Weight & 3.2 kg
\end{tabular}


Front view with Dimensions


Bottom view with Dimensions


Back view


Side view

\section*{II-9 Accessories}

\section*{Accessory ID Numbers}
\begin{tabular}{l|l}
\hline ID Number & Accessories \\
\hline \(382891-01\) & Pkgd, POSITIP 880 \\
\hline \(382929-01\) & Pkgd, Universal Mounting Arm, POSITIP 880 \\
\hline \(382892-01\) & Pkgd, Mounting Base POSITIP 880 \\
\hline \(378039-01\) & Pkgd, Remote Main Assy POSITIP 880 \\
\hline \(382930-01\) & AMI Box \\
\hline \(382898-05\) & Pkgd, Remote cable 5 M \\
\hline \(382898-10\) & Pkgd, Remote cable 10 M \\
\hline \(382898-20\) & Pkgd, Remote cable 20 M \\
\hline \(382898-30\) & Pkgd, Remote cable 30 M
\end{tabular}


POSITIP 880 Mounting Instructions
Mounting base
Id. Nr. 382 892-01



\section*{POSITIP 880 Mounting Instructions}

\section*{Tilt/Swivel Mount}

Id. Nr. 382 891-01


\section*{Index}

\section*{A}

Absolute coordinates ... 15
Absolute datum ... 13
Actual position ... 14
Arc, milling ... 64
Automatic ... 79

\section*{B}

Blend ... 66
Block function soft keys ... 74
Block function soft keys, turning ... 109

\section*{C}

Calculator functions ... 92
Centerline between two probed edges as datum ... 34
Chamfer ... 68
Console adjustment ... 91
Contour ... 91
Contour view ... 81
Contour view, graphic displays ... 81
Contour view, main view ... 81
Contours ... 81
Coordinate systems ... 12
Cycle execution ... 50

\section*{D}

Datum call ... 57
Datum setting ... 26
Datum setting with a tool ... 34
Datum setting with edge finder ... 29
Datum setting without probing function ... 27
Datum table ... 88
Directories ... 71
Directory, creating ... 72
Directory, selection and deletion ... 72, 73
Display configuration ... 88
Distance-To-Go ... 14, 36
DRO window ... 82

\section*{E}

Enable Ref ... 20

\section*{F}

Full part window ... 82

\section*{G}

Graphic positioning aid ... 36
Graphic positioning aid, function ... 90

\section*{H}

Hole patterns and rectangle patterns ... 59

\section*{I}

Incremental coordinates ... 15

\section*{J}

Job Setup menu ... 83

\section*{L}

Label 0 ... 60
Label call ... 60
Label number ... 60
Line, milling ... 63
Linear pattern ... 46
Loading, saving, deleting and clearing a program ... 70

\section*{M}

Math functions ... 93
Measured value output ... 89
Multipass cycle ... 107

\section*{N}

Negative sign ... 14
Nesting ... 59
Nominal position ... 14
Note/Set function ... 103

\section*{0}

Operating modes ... 21
Oversizes ... 101

\section*{P}

Position Drill ... 62
Position feedback ... 17
Positive sign ... 14
Preset ... 58
Probe circumference of a hole ... 32
Probe workpiece edge as datum ... 30
Probing function aborted ... 29
Probing functions for datum setting ... 28

\section*{P}

Program blocks, changing ... 76
Program blocks, deleting, copying and moving ... 76
Program capabilities ... 53
Program section repeats ... 59
Program views ... 80
Program, exporting ... 74
Program, importing ... 73
Program, running a ... 78
Programming features soft keys, turning ... 106

\section*{R}

Radius/Diameter display ... 101
Rectangle pocket milling ... 49
REF ... 17
Reference mark ... 17
distance-coded ... 17
Reference marks ... 17
crossing over ... 19
not crossing over ... 19
Right-hand rule ... 12
RPM calculator functions ... 94

\section*{S}

Scale factor ... 88
Set centerline as datum ... 31
Single block ... 78
Stopwatch ... 90
Subprograms ... 59
Surface speed table ... 94

\section*{T}

Taper calculator ... 104
Tool call ... 56
Tool data and datum setting, turning ... 102
Tool data entering ... 36
Tool setting, turning ... 102
Tool table ... 84
Trig functions ... 93
Turning, program functions ... 106

\section*{U}

Units of measurement, setting ... 91```


[^0]:    abs
    The datum setting cannot be restored from one power cycle to the next if the reference marks were not crossed
    before the datum was set.

